

CNC Flame/Plasma Cutting Control User's Manual

No.168, Xiadu Road, Haizhu District, Guangzhou, China 510300 Tel: +86-138-24444158 Fax: +86-20-84185336 E-mail: <u>info@CNCmakers.com</u> Website: <u>http://www.CNCmakers.com</u>

Precautions and Notes

%Transport and storage

- To not exceed six layers for products packing cases piling
- Forbid to climb, stand, or place heavy items on products packing cases
- To not use the cable connecting with the product to drag or move products
- Son-collision, non-scratching on the panel and display screen
- Prevent the moisture, exposure and rain affected packing cases

%Open Package Inspection

- Confirm products after opening package
- Check whether damages exist during the transportation
- Confirm whether parts are complete or have damages by comparison with list
- Contact us promptly if products models are inconsistent, parts are missed, or damages during shipping are found etc.

Wiring

- Professional personnel with corresponding capability is must for participation in wiring and inspection
- The Reliable grounding is must for products, with less than 4Ω ground resistance, and neutral wire (zero value wire) is not allowed to substitute grounding wire
- Wiring should be correct and secure, to avoid the consequences of product failure or unexpected outcome
- Surge absorption diode connecting with product should be linked upon the stipulated direction; otherwise the product may be damaged
- The power supply of the product should be cut before plug-in & plug-out or opening the cabinet.

%Overhauling

- Power off prior to overhauling or replacement of components
- Theck defects when short circuit or overload occur, and restart it after troubleshooting
- Do not connect power frequently and at least 1 minute interval after power-off for re-connection of power.

%Miscellaneous

- To not open the cabinet without permission
- Disconnect the power when long term stand-by
- Avoid dust and iron powder into controller
- If non-solid-state relay is used as output relay, freewheel diode should be connected in parallel on the relay coil. Check whether connected power satisfies the requirement, in order to avoid burning the controller
- The life span of controller is associated with environmental temperature; install cooling fan in the over-heat processing field. The working temperature range is between $0^{\circ}C \sim 60^{\circ}C$
- The Avoid to be used in the environments with high temperature, humidity, dust, or corrosive gas.
- Provide rubber rails for buffering in the place with strong vibration.

%Maintenance

The following items can be conducted for daily and regular inspection, under the general usage condition (environmental conditions: daily average temperature: 30°C, load-carry duty: 80%, and operational rate: 12 hours per day)

Daily inspection	Daily	 Confirm environmental temperature, humidity, dust and foreign matter; check whether there are abnormal vibration and sounds Check whether vents are be blocked by yarns 	
Regular inspection	One year	One year Check whether solid components are loose Check whether terminal blocks are damaged	

Contents

	a Cutting Control	
	otes	
	on	
-	Introduction	
1.1 System	n description	7 -
	es	
1.3 Specifi	ications	7 -
1.4 Applica	ation environment	- 8 -
➤ 1.5 Scope of	of application	- 8 -
Chapter II Product D	Description	9 -
2.1 Diagram	m of overall dimension	9 -
> 2.2 Guide	of controller type selection	10 -
Chapter III Electrical	ll connection	11 -
2.3 Genera	al drawing	11 -
I/O control		11 -
Controller power sup	pply	11 -
Motor-driven machin	ne	11 -
2.4 Definit	tion	12 -
➤ 2.4.1 JCP1	Line S/N description (16-channel input)	13 -
► 2.4.2、XS	39 JCP2 Line S/N description (16 –channel extended input)	13 -
➤ 2.4.3 XS2	JCP3 Line S/N description (16-channel input)	13 -
► 2.4.4 XS10	0 JCP4 Line S/N description (16 extended output)	14 -
This interface shoul	ld be connected to the external 24V power supply.	14 -
> 2.4.5	XS4 JCP9 Line S/N description (X, Y motor drive port)	14 -
> 2.4.6	XS5 JCP10 Line S/N description (Motor Y2)	15 -
> 2.4.7	XS6 JCP11 Line S/N description (Z, A motor drive port)	15 -
	XS11, XS12, XS13, XS14 JCP5, JCP6, JCP7, JCP8 Line S/N description (X, Y, Z,	
	trol)	
> 2.4.9	XS3 JCP12 Line S/N description (Hand-held box interface)	17 -
	0 XS7 JCP13 Line S/N description (analog voltage output)	
	1 XS15 JCP14 rear serial port	
	2 JCP15 front serial port/USB interface	
	3 JCP16 internal keyboard interface	
	4 XS8 JCP17 101-key standard keyboard interface	
	5 XS16 JCP18 standard network interface	
	6 JCP19 10.4" LCD interface	
	supply	

Interface of internal power supply:	20 -
2.6 Connection mode of interface and description	- 22 -
1) Connection mode of input signal	- 22 -
Control circuit	22 -
4) Connection mode of output signal	23 -
Chapter VI: Annex	24 -
> 4.1 Keyboard	24 -
Picture ① Controller keyboard	24 -
Picture ② Standard PC keyboard (Optional)	25 -
Comparison of standard PC keyboard and controller keyboard	
➢ 4.2 Remote controller	25 -
Picture 1: Handheld Remote Control Box	25 -
Picture 2: Remote Signal Receiver	26 -
The specific operation is as follows:	26 -
Pin assignment definition	26 -
Chapter IV: Examples of Connection	
Example 1	27 -
Example 2	27 -
Example 3	28 -
Connecting arc voltage height adjustor	
Section II: Adjustment	
Chapter I: Electronic Circuit Diagnosis and Adjustment	29 -
> 1.1 Output signal diagnosis	29 -
1.2 Input signal diagnosis	30 -
1.3 Motor diagnosis	
> 1.4 Key diagnosis	
Until now, system I/O diagnoses have completed.	31 -
Chapter II: Parameter Testing	
Settings:	32 -
> 2.1 Parameters for cut setting	32 -
The above picture shows the functions on the main interface of parameter settings	32 -
2.2 Machine parameters	
Interface after successfully inputting password	33 -
Machine settings:	33 -
2.3 Machine accuracy setting (impulse equivalent setting):	
Now if pressing key, the setting is cancelled, with original impulse equivalents reservatio	n; if waiting
system,	35 -
> 2.4 Functional parameters testing:	36 -
Other setting interface	
Parameters explanation:	
I/O setting	
Logic parameters:	
 2.5 Cutting process parameters test 	
Flame:	
Parameters explanation:	
	- 3 -

Plasma:	- 43 -
Plasma cutting timing diagram	44 -
Chapter III: Drive and Motor Startup	45 -
> 3.1 Stepper drive startup	45 -
1.1 Setup breakdown:	45 -
1.2 Working current selection	45 -
1.3 Half current /full current setup:	45 -
Figure 1: Toggle switch	- 46 -
 3.2 Servo drive startup 	
Parameters save procedure for QS6:	
Parameters save procedure for Panasonic A5:	
Chapter IV: Draw line Detection	
Section III: Software	
Chapter I: Introduction of Operational Panel and Main Interface	49 -
I Introduction of panel.	
 2. LCD main screen introduction 	50 -
The above picture is the main screen of CNC6500 software, and the following functions can be d	
50 -	
Chapter II Software Menu Structure	51 -
Chapter III: Software Function and Technical Parameters	53 -
> 3.1 Software menu	53 -
> 3.2 Particular introduction for features	
➤ 3.2.1 Technology type	54 -
1. Flame cutting	55 -
3. Mark 1(Powder scribing)	55 -
➢ 3.2.2 Graphic library function	55 -
➢ 3.2.3 Rectangle edge-shared feature	
3.2.4 Perfect cutting gap compensation feature	58 -
 3.2.5 Breakpoints (Spot) recovery feature 	
➤ 3.2.6 Graphic processing feature	
3.2.6-1 Graphic rotation	
Graphic rotation	
3.2.6-2 Graphic array	
Graphic Array Interface	
Basic operation:	
Calibration Interface	
Calibration Principle:	
The first Way of calibrating the steel plate: Shaft X is calibration reference edge	
The second Way of calibrating the steel plate: Shaft Y is calibration reference edge	
Restore	
 3.2.7 Real-time track display feature 	
 3.2.8 Plasma arc detection, initial positioning, and corner signal control features 	
 3.2.9 Track continuous back-off feature	
 3.2.10 Pause feature	
As the picture shown, the explanation of menu is as follows:	
 3.2.11 Perforation point selection feature	
1	

Perforation Point Selection	67 -
3.2.12 Diagnosis feature	67 -
System diagnosis	67 -
Interface of input port diagnosis	68 -
Interface of output port diagnosis	69 -
Interface of motor control diagnosis	70 -
Key test interface	71 -
3.2.13 Free switch for Shaft X and Shaft Y	71 -
3.2.14 Self-locked JOG flexible switching	72 -
3.2.15 User-defined input and output ports feature	72 -
3.2.16 User-defined M complex instruction	73 -
Interface of user-defined functions	74 -
3.2.17 Perfect and stable file system	76 -
Interface of File Management	76 -
New file interface	77 -
Keyboard layout	78 -
Interface of editing new file	79 -
USB Files	79 -
Interface after the USB disk is connected	80 -
Edit processing file	80 -
Interface of file content	81 -
Graph	- 82 -
Detection	- 82 -
Save	- 82 -
Add line	- 82 -
Delete line	- 82 -
Operation	- 82 -
 3.2.18 Parameters backup and restore feature. 	84 -
System management	- 84 -
System management	
Default	
Interface of default setup	
One-Key Recovery	- 85 -
> 3.3 Software upgrade	
Choose the upgrade mode	
USB disk connected	
USB disk connected	
Upgrade via PC	
Connect the PC	
Recording program	
Press [ESC] to return	
Press [ESC] to return	
Start Mode	
3.2.19 Multi-language display support	
CNC6500 has French, Russian, Polish, and Turkish etc for displays other than English display	
3.2.20 Multi-language input method support	
99	

Chapter IV Instruction System	- 95 -
 Explanation of programming symbol 	- 95 -
 Coordinate explanation 	- 95 -
 Relative coordinate 	95 -
 Absolute coordinate 	- 96 -
G instruction explanation	- 96 -
➢ G92 reference point setup	- 96 -
Format: G92 X0 Y0	- 96 -
➢ G00 idle motion	- 96 -
G00 X75 Y75	96 -
M02	96 -
➢ G01 linear cutting	- 96 -
G92 X0 Y0	- 96 -
G90	- 96 -
G00 X100 Y50	96 -
M07	96 -
G01 X-30 Y90	- 96 -
M08	96 -
M02	97 -
➢ G02/G03 circular arc cutting	97 -
For example (G02):	97 -
G92 X0 Y0	- 97 -
G00 X55 Y55	97 -
For example (G03):	97 -
G92 X0 Y0	- 97 -
G00 X55 Y55	- 97 -
➢ G04 Pause/Delay instruction	- 97 -
	- 98 -
➢ G22/G80 cycle processing	- 98 -
G81 workpiece counting	- 98 -
Common M instructions	- 99 -
Annex I. Illustration of edition and processing	- 100 -
	- 101 -
Square	- 102 -
	- 103 -
-	- 104 -
_	- 104 -
Annex II. G Instruction Quick Reference	
Annex III. M Instruction Quick Reference	
Annex IV. Troubleshooting	
Annex I: CNC6500 Alarm List	
Record modification (I)	
Record modification (II)	- 110 -

Section I: Connection

Chapter I: Function Introduction

> 1.1 System description

CNC6500 flame controller is a high performance, multi-functional motion controller, whose control circuit uses the high-speed microprocessor and large custom-tailor IC chip, featuring the multilayer printed board. The display is 10.4" color LCD screen, and the attached software integrates advantages from home and oversea factories. For this reason, the controller features stable hardware and perfect software, and is a reliable flame/ plasma controller with high performance ratio. According to the customer's demand, CNC6500 will be divided into A/B series:

CNC6500-A series include 44-channel DI, 16-channel DO, 4-axis pulse/direction signal output, interface featuring true/false bilateral drive, external keyboard interface, USB port (principal and subordinate), and RS232 communication interface.

HC-6500 B series include 60-channel DI, 36-channel DO, 4-axis pulse/direction signal output, 4-axis ABZ-phase coder feedback input, 2-channel analog voltage output, external keyboard interface, USB port (principal and subordinate), RS232 communication interface, and standard network interface. In the following we are going to introduce the hardware functions of CNC6500-B series.

CPU	SANSUNG series S3C2410A processor (ARM9), primary frequency: 200MHz Adopt the super large programmable FPGA, real time multitask control technology and hardware interpolation technology, ensuring a high stability during the operation;				
Memory	With 64M SDRAM; With 64M Nand FLASH ROM (50M can be simulated as USB disk)				
Display	Adopt 10.4" true color LCD display				
Input control	CNC6500-A series include 44-channel DI; HC-6500 B series include 60-channel DI				
Output control	CNC6500-A series include 16-channel DO; HC-6500 B series include 36-channel DO				
Pulse control	Four-channel pulse photovoltaic isolation output, maximum frequency 2MHz. Any 2-4 axes linear interpolation; Frequency error of pulse output is less than 0.1%;				
Pulse mode	pulse + direction or pulse+ pulse				
Communication	Support USB1.1 equipment interface, RS232 communication interface, support USB host-port interface (capable of reading USB disk) Support TCP/IP network interface				
Extension	Capable of connecting external keyboard				

> 1.2 Features

> 1.3 Specifications

Classification	Specification
Digital input	Channel: 44, all photovoltaic isolation Input voltage: 12-24V High level>4.5V Low level<1.0V Isolation voltage: 2500V DC Optocoupler input delay time≤0.1mS
Counting input	Channel: 4-axis Z-phase coding input, all photovoltaic isolation Maximum counting frequency: 2MHz Input voltage: 5V (If you use 24V, the internal current limiting resistance should be changed to 2K)

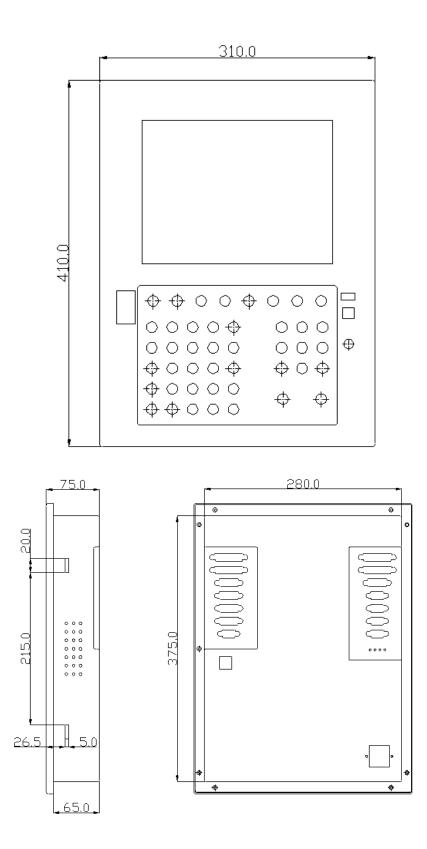
⊳

CNC Flame/Plasma Cutting Control

	High level >1.5V
	Low level <1.0V
	Isolation voltage: 2500V DC
	Channel: 4-axis pulse, 4-axis directions, all photovoltaic isolation
Pulse	Maximum pulse frequency: 2MHz
output	Output type: 5V differential output
_	Output mode: Pulse + Direction, or Pulse + Pulse
	Output channel: 16 channels, all photovoltaic isolation
Digital output	Output type: NPN open-collector output 5-24VDC, rated current 0.5A, maximum current of single
	channel can reach 1A
RS-232 baud	1200、2400、 4800、9600、19200、38400、57600、115200
rate (bps)	

> 1.4 Application environment

- > Power supply: $88 \sim 264$ VAC, $125 \sim 373$ VDC, frequency: $47 \sim 63$ Hz,
 - Typical value: AC220V 50HZ
- Power consumption: No-load power consumption <15W</p>
- > Operating temperature: $-10^{\circ}C \sim 50^{\circ}C$
- > Storage temperature: $-20^{\circ}C \sim 80^{\circ}C$
- \blacktriangleright Operating humidity: 20% ~95%
- > Storage humidity: $0\% \sim 95\%$


> 1.5 Scope of application

 $1{\sim}4$ axis flame cutting and plasma cutting

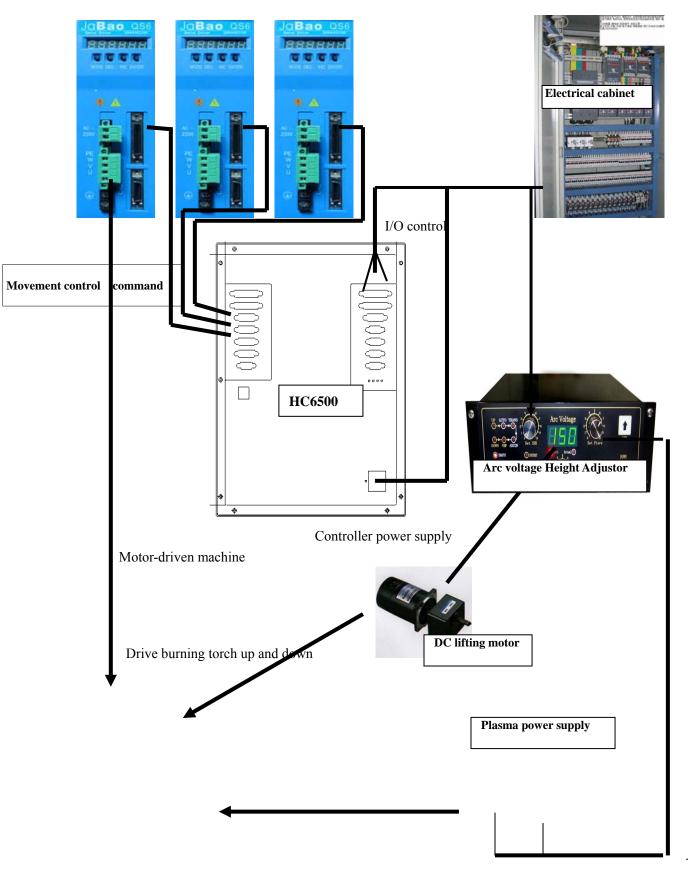
1~4 stepping/servo motor control

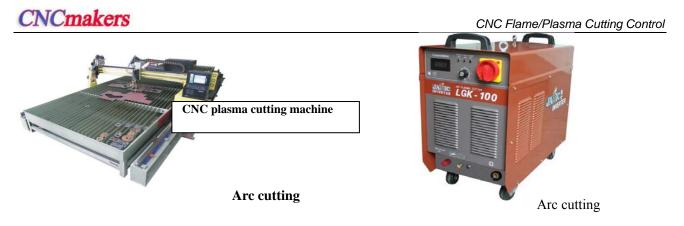
Chapter II Product Description

> 2.1 Diagram of overall dimension

> 2.2 Guide of controller type selection

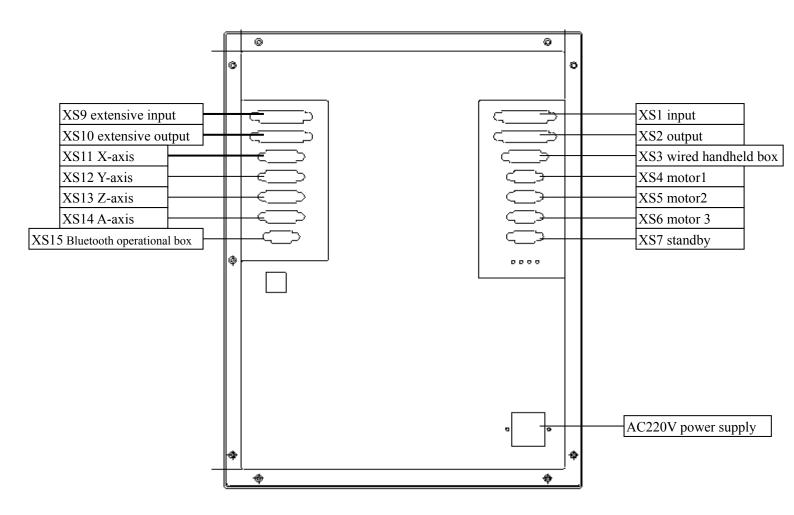
According to the interface, CNC6500 can be divided into two types, function A and function B, in order to satisfy the demand of different customers. Customers can custom-tailor different models according to their different requirements. Interfaces of function A and B may be different (subject to the actual objects), and the silk-screen is alike. For details, see the table below:

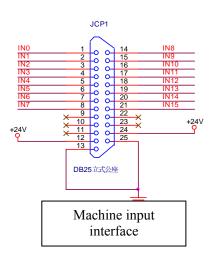

Hardware	Function A	Function B	
		60 inputs: 16 inputs +16 extended inputs +4	
Input	16 inputs +16 extended inputs +10 handheld box inputs	alarm inputs +12 coder feedback inputs +10	
	L L	handheld box inputs +2 hand wheel inputs	
		36-channel output: 16 outputs +16 extended	
Output	16-channel output	outputs (need external power supply) +4 axis	
		standby outputs	
	4-axis pulse and direction output		
Pulse output	(featuring true/false bilateral drive	4-axis pulse and direction output	
	interface)		
Communication	Keyboard, USB (Primary and	Keyboard, USB (Primary and secondary)	
port	secondary), RS232	RS232, standard network output	
Coder		4-axis ABZ-phase coder feedback input	
Analog output		2-channel analog voltage output	


Table I: Comparison of function A and B of CNC6500 flame cutting system

Chapter III Electrical connection

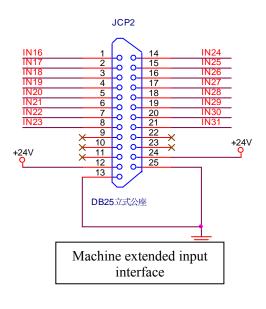
> 2.3 General drawing




> 2.4 Definition

CNC6500 interface has two optional types for customers upon the specific situation:

- 1. XS11、XS12、XS13、XS14 on the left column are the axis control signal lines, with servo alarm and servo enable signal for each axis. Refer to interface definition for details.
- 2. XS4、XS5、XS6 on the right column are also the axis control signal lines, without servo alarm and servo enable signal. Refer to interface definition for details.



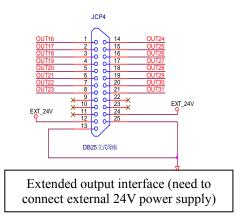
> 2.4.1 JCP1 Line S/N description (16-channel input)

Line S/N	Name	Function	Line S/N	Name	Function	
1	IN0	X positive limit	13	GND	24V power supply grounding	
2	IN1	Y positive limit	14	IN8	X negative limit	
3	IN2	Arc voltage detection	15	IN9	Y negative limit	
4	IN3	Manual pause (for anti-collision)	16	IN10	Manual emergency stop	
5	IN4	Manual X positive	17	IN11	Manual start	
6	IN5	Manual Y positive	18	IN12	Manual X negative	
7	IN6	Manual acceleration	19	IN13	Manual Y negative	
8	IN7	Initial positioning	20	IN14	Manual deceleration	
9	NC		21	IN15	Back to machine ref. point	
10	NC	Not connected	22	NC	Not connected	
11	NC		23	NC		
12	+24V	External +24V power supply	24	+24V	External +24V power supply	
			25	GND	24V power supply grounding	

> 2.4.2, XS9 JCP2 Line S/N description (16 –channel extended input)

Line	Name	Function	13	GND	24V power supply
S/N					grounding
1	IN16	Z positive limit	14	IN24	Z negative limit
2	IN17	A positive limit	15	IN25	A negative limit
3	IN18	X axis zero	16	IN26	General IN
4	IN19	Y axis zero	17	IN27	General IN
5	IN20	Z axis zero	18	IN28	General IN
6	IN21	A axis zero	19	IN29	General IN
7	IN22	Back to the origin	20	IN30	General IN
8	IN23	GeneralIN	21	IN31	General IN
9	NC		22	NC	Non connected
10	NC	Non connected	23	NC	
11	NC		24	+24V	External +24 power
					supply
12	+24V	External +24	25	GND	24V power supply
		power supply			grounding

> 2.4.3 XS2 JCP3 Line S/N description (16-channel input)


Line S/N Name Function	Line S/N Name	Function
---------------------------	------------------	----------

JCP3 0UT0 1 0 14 0UT8 0UT1 2 0 15 0UT9 0UT2 3 0 16 0UT10 0UT3 4 0 17 0UT11 0UT4 5 0 18 0UT13 0UT5 6 0 19 0UT13 0UT6 7 0 20 0UT14 0UT7 8 21 0UT15 +24V × 11 0 23 × +24V 12 0 25 Machine output interface

		C	NC F	-lame/Plasr	ma Cutting Control
1	OUT0	Gas control			
2	OUT1	Cutting torch rising	14	OUT8	Cutting oxygen/arc
3	OUT2	Ignition	15	OUT9	Burning torch falling
4	OUT3	High preheating oxygen	16	OUT10	Grade 3 perforation oxygen
5	OUT4	Grade 1 perforation oxygen	17	OUT11	Preheating oxygen
6	OUT5	Flame increase	18	OUT12	flame plasma switch
7	OUT6	General valve	19	OUT13	Height adjusting control
8	OUT7	None	20	OUT14	Blowing control
9	NC	Non connected	21	OUT15	Grade 32 perforation oxygen
10	NC		22	NC	Non connected
11	NC		23	NC	
12	+24V	External +24V power supply	24	+24V	External +24V power supply
13	GND	24V power supply grounding	25	GND	24V power supply grounding

> 2.4.4 XS10 JCP4 Line S/N description (16 extended output)

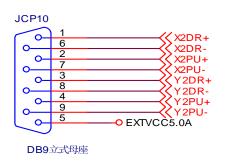
This interface should be connected to the external 24V power supply.

Restricted by the machine size, the capacity of internal switching power supply is limited. To ensure the stable operation of system, you should add an external 24V DC power supply when using the extended 16-channel output of OUT16—OUT31. Connect the 24V power supply to pin 12 and 24, and the power supply grounding to pin 13 and 25.

Line S/N	Name	Function	Line S/N	Name	Function
1	OUT16		13	GND	External +24V grounding
2	OUT17		14	OUT24	General output
3	OUT18	C 1	15	OUT25	
4	OUT19	General output	16	OUT26	
5	OUT20	ouiput	17	OUT27	
6	OUT21		18	OUT28	
7	OUT22		19	OUT29	
8	OUT23		20	OUT30	
9	NC		21	OUT31	
10	NC	Non connected	22	NC	Non connected
11	NC	connected	23	NC	
12	EXT24V	External +24V power supply input	24	EXT24V	External +24V power supply input
13	GND	24V power supply grounding	25	GND	24V power supply grounding

> 2.4.5 XS4 JCP9 Line S/N description (X, Y motor drive port)

Line S/N	Name	Function
-------------	------	----------

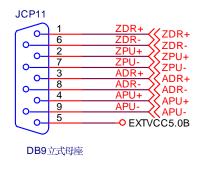

Motor X. Y

JCP9		
	1	
	6	XDR-
	2	XPU+
	7	XPU-
	3	
	8	YDR-
	4	YPU+
	9	YPU-
	5	O EXTVCC5.0A
\smile)	EXTREC3.0A
DB9	立式母座	

		<u> </u>
1	XDR+	X axis direction +
6	XDR-	X axis direction -
2	XPU+	X axis pulse +
7	XPU-	X axis pulse -
3	YDR+	Y axis direction +
8	YDR-	Y axis direction -
4	YPU+	Y axis pulse +
9	YPU-	Y axis pulse -
5	EXTVCC5.0A	Provide external +5V power supply A, especially used for the common-anode connection of driver

CNC Flame/Plasma Cutting Control

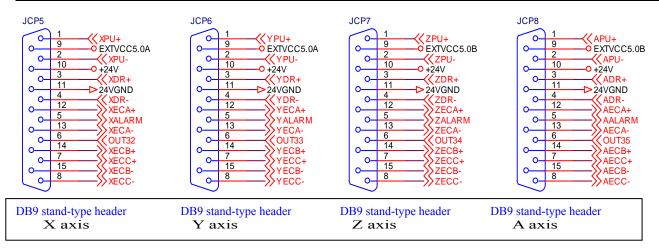
> 2.4.6 XS5 JCP10 Line S/N description (Motor Y2)



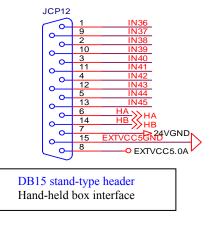
Line S/N	Name	Function
1	X2DR+	
6	X2DR-	
2	X2PU+	
7	X2PU-	The definitions of these interfaces
3	Y2DR+	are the same as those of JCP9, but
8	Y2DR-	without electrical connection.
4	Y2PU+	
9	Y2PU-	
5	EXTVCC5.0A	

Motor Y2

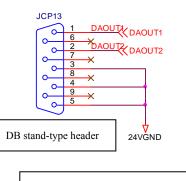
Motor Z, A


> 2.4.7 XS6 JCP11 Line S/N description (Z, A motor drive port)

Line S/N	Name	Function
1	ZDR+	Z axis direction +
6	ZDR-	Z axis direction -
2	ZPU+	Z axis pulse +
7	ZPU-	Z axis pulse -
3	ADR+	A axis direction +
8	ADR-	A axis direction -
4	APU+	A axis pulse +
9	APU-	A axis pulse -
5	EXTVCC5.0B	Provide external +5V power supply B, especially used for the common-anode connection of driver

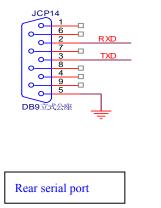

2.4.8 XS11, XS12, XS13, XS14 JCP5, JCP6, JCP7, JCP8 Line S/N

description (X, Y, Z, A-axis motor control)

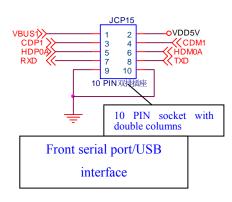

Line S/N	Name	Function	
1	nPU+	Pulse signal +	
2	nPU-	Pulse signal -	
3	nDR+	Direction signal +	
4	nDR-	Direction signal -	
5	IN	Used as servo alarm input (X-32 Y-33 Z-34 A-35)	
6	OUT	Servo enable output (X-32 Y-33 Z-34 A-35)	
7	nECZ+	Coder Z-phase input +	
8	nECZ-	Coder Z-phase input -	
9	PUCOM	Used for driver with single-end input	
10	+24V		
11	24VGND	Provide external 24V power supply	
12	nECA+	Coder A-phase input +	
13	nECA-	Coder A-phase input -	
14	nECB+	Coder B-phase input +	
15	nECB-	Coder B-phase input -	

> 2.4.9 XS3 JCP12 Line S/N description (Hand-held box interface)

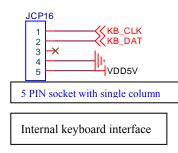
Line S/N	Name	Function
1	IN36	Digital input
2	IN38	Digital input
3	IN40	Digital input
4	IN42	Digital input
5	IN44	Digital input
6	НА	Hand wheel input (+5V power supply)
7	24VGND	24V common grounding
8	EXT_VCC	Isolated +5V power supply for
		hand wheel
9	IN37	Digital input
10	IN39	Digital input
11	IN41	Digital input
12	IN43	Digital input
13	IN45	Digital input
14	HB	Hand wheel input (+5V power
		supply)
15	EXT_GND	Isolated +5V power supply grounding


> 2.4.10 XS7 JCP13 Line S/N description (analog voltage output)

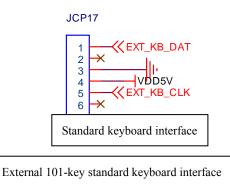
DB9 stand-type header Analog voltage output interface


Line	Name	Function
S/N		
1	DAOUT1	Analog voltage output (0V—10V+)
2	DAOUT2	Analog voltage output (0V—10V+)
3		
4	24VGND	Provide internal24V grounding
5		
6		
7	Not connected	
8	Not connected	
9		

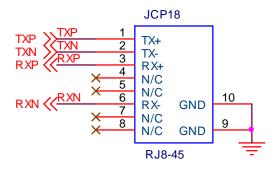
> 2.4.11 XS15 JCP14 rear serial port


Line S/N	Name	Function
1		Not connected
2	RXD	Receiving serial port data
3	TXD	Transmitting serial port data
4		Not connected
5	GND	Signal grounding
6		
7	Not connected	
8	Not connected	
9		

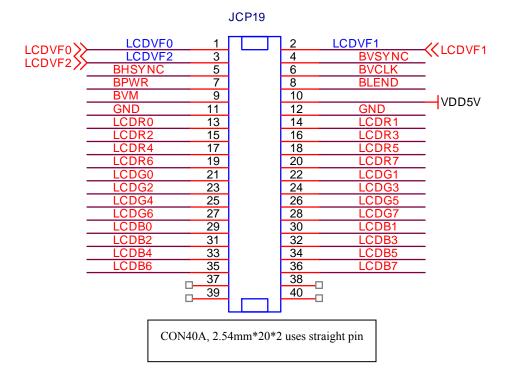
> 2.4.12 JCP15 front serial port/USB interface


Line S/N	Name	Function	
1	VBUS1	Secondary VBUS	
2	VDD5V	Primary VCC	
3	CDP1	Secondary D+	
4	CDM1	Secondary D-	
5	HDP0A	Primary D+	
6	HDM0A	Primary D-	
7	RXD	Receiving serial port data (connected with rear	
		serial port RXD)	
8	TXD	Transmitting serial port data (connected with rea	
		serial port TXD)	
9	GND	Signal GND	
10	GND	Signal GND	

> 2.4.13 JCP16 internal keyboard interface


Line S/N	Name	Function	
1	KB_CLK	Clock	
2	KB_DAT	Data	
3	NC	Not connected	
4	GND	Power supply grounding	
5	VDD5V	+5V power supply	

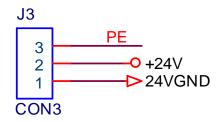
> 2.4.14 XS8 JCP17 101-key standard keyboard interface


Line S/N	Name	Function	
1	KB_DAT	Data	
2	NC Not connected		
3	GND Power supply grounding		
4	VDD5V	VDD5V +5V power supply	
5	KB_CLK	Clock	
6	NC	Not connected	

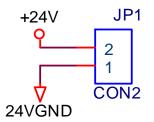
> 2.4.15 XS16 JCP18 standard network interface

> 2.4.16 JCP19 10.4" LCD interface

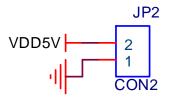
> 2.5 Power supply

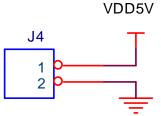

This system is powered by 220V municipal power supply directly. The zero line and front line are connected according to the electrical specifications standard, L represents the front line and N represents the zero line. If the applied voltage is not 220V AC, you need to re-evaluate the specifications of fuse.

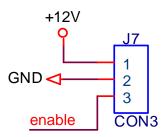
Interface of internal power supply:

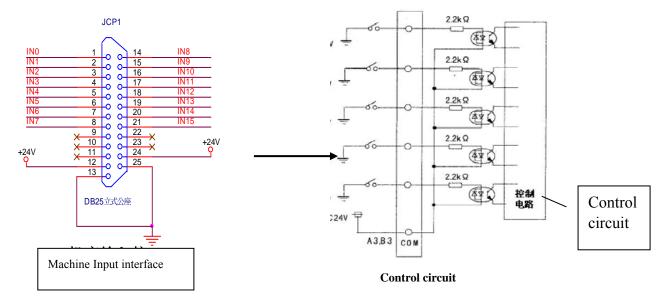


J3: Lead-in interface of system 24V power supply, the wiring is defined as follows: (Refer to the silk-screen on PCB)


Pay attention to the specifications of fuse at SI1 on the PCB. Please use the 250V, 4A fuse.

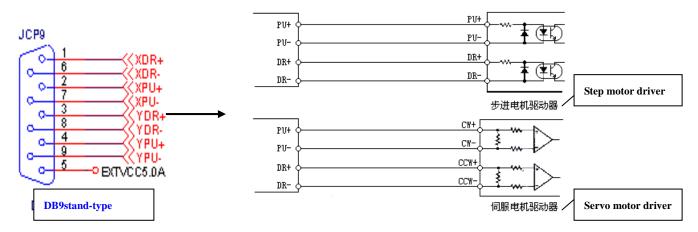

JP1: Input interface of switching power supply for converting 24V to 5V, the wiring is defined as follows: (Refer to the silk-screen on PCB)


JP2: Output interface of switching power supply for converting 24V to 5V, the wiring is defined as follows: (Refer to the silk-screen on PCB)


J4: 5V power supply interface for downloading program, the wiring is defined as follows: (Refer to the silk-screen on PCB)

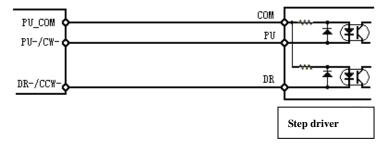
J7: Interface of backlight power supply, the wiring is defined as follows: (Refer to the silk-screen on PCB)

> 2.6 Connection mode of interface and description


1) Connection mode of input signal

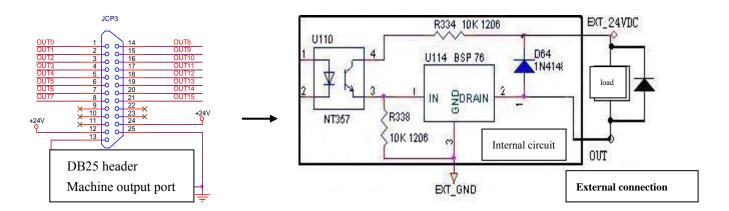
The common end of CNC6500 input signal is connected to the positive terminal of system +24V power supply, and the input point is connected to the corresponding terminal. The input points are all low level effective. The current of single input could not exceed 15mA or less than 5mA.

2) Connection mode of pulse output signal


Differential mode:

For stepper motor driver with individual pulse and direction input, and most of servo motor driver, it is recommended to use this mode to get the better anti-interference performance.

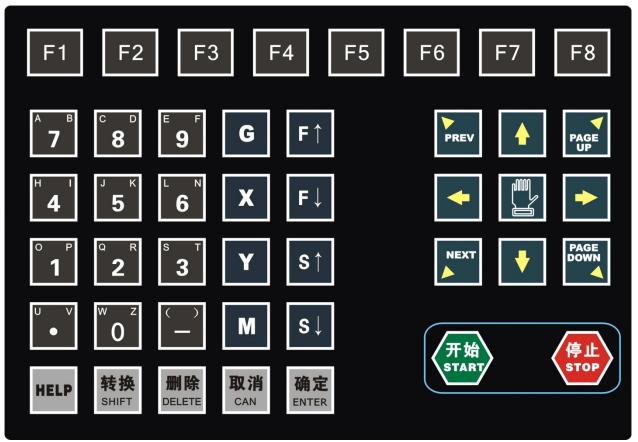
Single-end mode:


It is applicable to the earlier stepper motor driver whose pulse and direction anodes are connected together.

Note: It is not applicable to the some stepper motor drivers whose pulse and direction cathodes are connected together.

Especially note that the 5th pin EXTVCC5.0A is exclusively used in non-differential connection of motor pulse. It should not be used for other purposes, or it may damage the internal circuit of controller. Any two pins of PU+, PU-, DR+ and DR- cannot be connected together or used in parallel; otherwise, it may damage the internal circuit. 4) Connection mode of output signal

The digital output of this control system is the open-collector output. The common end should be connected with GND of external power supply, and the output point is low level effective. Connect the load between +24V power supply and output point. The internal output circuit has complete protecting measures, including over-current protection, over-voltage protection, short-circuit protection, and follow current protection. However, if an external inductive load such as relay is used, please connect a freewheeling diode at the two ends of relay coil as follows:



It is suggested that the supply voltage be < 24V; it is better not to exceed 30V. Positive and negative poles should not be connected reversely and the load should not be in short circuit; otherwise, it may cause unexpected damage.

Chapter VI: Annex

> 4.1 Keyboard

CNC6500 control system has self-contained keys, and the standard PC keyboard interface is also supported. Here we are going to introduce the corresponding relationship between standard PC keyboard and the keyboard of control system.

Picture ① Controller keyboard

The above picture shows the keyboard of cutting control system CNC6500. For detailed functions, please refer to the software user manual.

The following picture shows the standard PC keyboard:

Picture ② Standard PC keyboard (Optional)

Comparison of keys on optional standard PC keyboard and controller keyboard is listed as below:

S/N	Standard PC keyboard	Controller keyboard
1	F1-F8	F1-F8
2	F9	START
3	F10	STOP
4	F11	Manual
5	F12	Help
6	Direction key	Direction key
7	HOME	PREV
8	END	NEXT
9	ESC	CANCEL
10	DELETE	DELETE
11	[S↑
12]	S↓
13	. ,	F↑
14	د	F↓
15	26 letters	26 letters
16	Number keys	Number keys

Comparison of standard PC keyboard and controller keyboard

Numbers and letters of controller keyboard adopt the compound key. For detailed input methods, please refer to the user manual on software.

4.2 Remote controller

Special remote controller is optional to match CNC6500, to provide easy on-site operation to the customer.

Picture 1: Handheld Remote Control Box

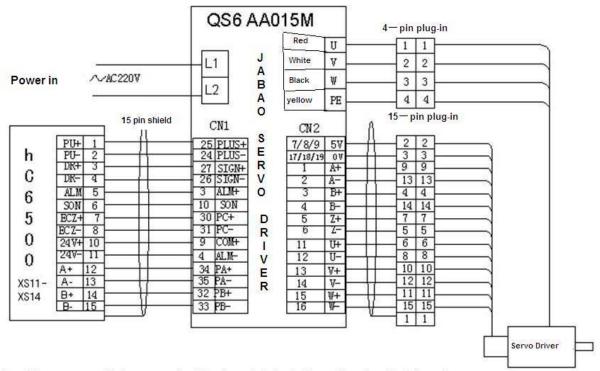
Picture 2: Remote Signal Receiver

The specific operation is as follows:

- 1. The remote signal receiver is plugged into XS 15 JCP14 port, and the indicator should be on.
- 2. Four AA size batteries are placed into handheld remote control box, and the indicator should be on.
- 3. Frequency adjustment knobs on handheld remote control box and signal receiver are be set on the same shift.

Pin assignment definition

	1 2 7 3 8 4 9 5		-
Rear serial port			

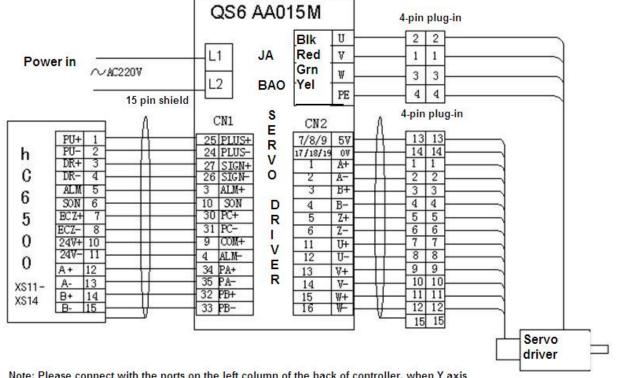

Line S/N	Name	Function		
1		Not connected		
2	RXD	Receiving serial port data		
3	TXD	Transmitting serial port data		
4		Not connected		
5	GND	Signal grounding		
6	Not connected			
7	+5V	5V power supply output (Supply power by receiver)		
8	5V	5V power supply output (Supply power by receiver)		
9				

Chapter IV: Examples of Connection

> Example 1

Connecting servo motor driver:

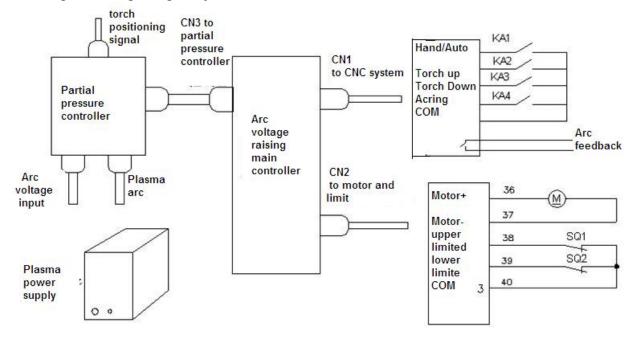
The following diagram shows the connection of controller with servo motor driver and match ACH AV servo motor:


Note: Please connect with the ports on the left column of the back of controller, when Y axis intends to connect with dual-driver with servo alarm signal. The same connection method as above can be used, when Z axis substitutes Y2 axis. Only YZ coaxial setting is conducted in the system parameters.

Example 2

Connecting servo motor driver:

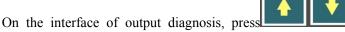
The following diagram shows the connection of QS6AA015M series servo motor driver, and match ACH AC servo motor:


4

Note: Please connect with the ports on the left column of the back of controller, when Y axis intends to connect with dual-driver with servo alarm signal. The same connection method as above can be used, when Z axis substitutes Y2 axis. Only YZ coaxial setting is conducted in the system parameters.

Example 3

Connecting arc voltage height adjustor


Section II: Adjustment

Chapter I: Electronic Circuit Diagnosis and Adjustment

> 1.1 Output signal diagnosis

On the interface of cut setting, press key to "Button"(button diagnosis) as the following picture showing the **output diagnosis**.

	Flame/Plasma/Fluid CCSV0.2.23 Système 05:14:12 Output port check						:14:12		
	outo XX	0UT1 	out2 Ö	out3 Ö	out4 Ö	ou t 5 Ö	0UT6 	0 017 Ö	
	0 UT8 	0 017 9 ; ¢ :	outio	0UT11 	0UT12 .☆	00 T13 •00:	0UT14 .☆	00 t 15 	
	Tips:	Ga: ∕Ò́O		On (Pres	s[enter]	key)	ÖSelect		
Home	Input	Out	iput	Motor	Butto	n Term	inal		Return

keys to move the cursor to the

corresponding output. Then press key, and if connection is correct, the output corresponding to the burning torch will produce level output; if connection is wrong, the incorrect output corresponding to it will be shown.

-

> 1.2 Input signal diagnosis

The following picture shows the input diagnosis:

Fla	Flame/Plasma/Fluid CCSV0.2.23					
		Input por	t check			
Port00 🔆	Port01 🔆	Port02 🔆	Port03 🔆	Port04 🔆	Port05 🔆	
Port06 🔆	Port07 🔆	Port08 🔆	Port09 🔆	Port10 🔆	Port11 🔆	
Port12 🔆	Port13 🔆	Port14 🔆	Port15 🔆	Port16 🔆	Port17 🔆	
Port18 🔆	Port19 🔆	Port20 🔆	Port21 🔆	Port22 🔆	Port23 🔆	
Port24 🔆	Port25 🔆	Port26 🔆	Port27 🔆	Port28 🔆	Port29 🔆	
Port30 🔆	Port31 🔆	Port32 🔆	Port33 🔆	Port34 🔆	Port35 🔆	
Ti	ps: <u>ò</u>	Off	- <u>()</u> - On			
Home Input	Output	Motor	Button	Terminal	Return	

The logic of output is just the opposite of input. When the input exists on the corresponding port, the green analog light will be shown on the corresponding port to indicate OFF. Please refer to the above picture, and if connection is wrong, the connected information will be shown on the wrong position.

> 1.3 Motor diagnosis

It is used to confirm whether the motor connection is right, and the interface is as follows:

keys to move the cursor to the corresponding motor axis Then press

```
确定
CONFIRM
```

key, and the corresponding motor axis will rotate after receiving the command. If the wrong axis exists, the connecting line of axis should be changed; if incorrect direction exists, the line of axis should be changed, until it is accurate.

> 1.4 Key diagnosis

It is used to detect whether the key is malfunctioned, which is shown in the following picture:

press [CAN] to exit	PS/2 keyboard test>	05:18:10

Press the key on the corresponding position of keypad, and reaction will be shown on the interface. If pressed repeatly without any reaction, this key is mal functional.

Until now, system I/O diagnoses have completed.

Chapter II: Parameter Testing

Settings:

Main interface for parameter settings and main parameters settings entry for system are as follows:

> 2.1 Parameters for cut setting

Flame/Plasma/Fluid CCSV0.2.23 Systime 0	5:18:41
Cutset	
Measure-	
Measure X 00000.000 mm Y 00000.000 mm	
MOD	
Cutmode Flame MO7 Default MO8 Default	
Speed	
LimitSpeed 02000 mmpm	
Compensate	
SlotCompen 00.00 mm S-cpst 00.00 mm	
Regulate	
Angle +00.000 deg (-90 °,90 °)	
Home Cutset Cutstyle Advanced SysManag SysDiagn Save	Return

The above picture shows the functions on the main interface of parameter settings

"Measure" refers to the Measure of processed plate, to verify whether the plate is on the working table, and whether the graph exceeds the Measure of plate. This function cannot work without setting.

"**MOD**" is divided into cutting mode, M07 mode, and M09 mode etc. Cutting mode refers to the cutting technique of machine with current following cutting modes on the machine: flame, plasma, and preview modes. M07 mode and M08 mode are the M07 and M08 method for burning torch action, with the following two types: User-defined method and default method. Generally default method is ok. Under the special requirement, User-defined method can be used.

Note: all of parameters are separated to be saved on the basis of cutting modes, to avoid mixing up. The parameters which were seen before are only under the current cutting mode, without mutual interference; however, system parameter is exceptional.

"Speed" here refers to the processing speed limit, with actual speed of processing is smaller than this speed. Thus

the speed multiplied by the speed ratio, which exists under the automatic interface of Lemin. Meanwhile,

F5

F↓

is adjustable, with value more than 0 but less than 1.

"Compensate": values of cutting gap compensation and mark compensation (this function temporally can't be used) can be set in the compensation.

"Angle" can receive the calibration angle for modified plate, to use the system auto calibration function to obtain the angle. Cancellation of plate angle only set the value to be 0.

After whole parameters are set in the parameters setting interface, when these settings need to save, press, system will prompt "Parameters are saved, and press any key to return". Then press any key with parameters saved successfully.

> 2.2 Machine parameters

Press in the interface of main parameters, input password "360" or "361", and then the parameters in this interface will not be changed easily. Therefore password is necessary for entering this function interface. After

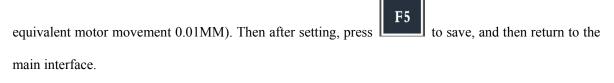
inputting the right password, press **GONFIRM** key to enter the interface as follows:

Flame/Plasma/Fluid CCSV0.2.23	SysTime	05:19:12
Machine Parameter		
Table sizeX 00000.000 mm Y 00000.000 mm Line Gun DisX +0000.000 mm Y +0000.000 mm Drill Gun DisX 00000.000 mm Y 00000.000 mm Rev Clearance X 00000.000 mm Y 00000.000 mm		
<pre>X equivalent 0.005000mmpp(>0.001) Y equivalent 0.005000mmpp(>0.001) Equivalent guide</pre>		
Home Machine Speed Setting I/O Set LogicPara	I Save	Return

Interface after successfully inputting password

Machine settings:

1. **Table size**: the machine's working table size is set; thus the system will easily prompt whether the plate and graph exceed the allowed size of table. If there is no table parameter, 0 can be

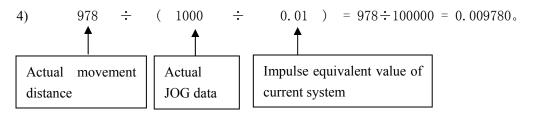

selected.

- 2. Line Gun Dist X is used to confirm the distance between scribing gun and burning torch (this function temporally is unavailable).
- 3. **Rev Clearance** is used to set backlash compensation of shaft X and shaft Y;
- 4. X / Y equivalent is a bridge of system and exterior, and this value should be adjusted cautiously. It should be measured many times to make effort to be accurate. There are two modes in the system for impulse equivalent setting: manual mode and wizard mode. Here the manual mode shall be introduced firstly.

> 2.3 Machine accuracy setting (impulse equivalent setting):

1. Manual mode:

1) X / Y equivalent in the interface are set to be 0.010000 (then control system will generate an impulse


ito enter manual interface, and press key to set shaft X movement distance.

Then input the length of JOG. It is presumed that the JOG unit is 1000MM.

3) Press CONFIRM to start to JOG, with the presumption of 978MM actual movement distance.

The calculation formulation is as follows:

5) Return to the main interface and press **F5** and press **to move**

cursor to an accurate position. Input 0.009780 into impulse equivalent coefficients respectively, and then it is ok.

Note: Usually a little tolerance exists between the impulse equivalents of shaft X and shaft Y on a machine. Thereby, their values should be respectively set during the commissioning (it is strongly recommended that impulse equivalents are adjusted to be same).

2. Setting wizard method with system impulse equivalent

The use and operation of impulse equivalent setting wizard are as follows:

key in the parameters interface, and move cursor to the position of

CONFIRM key to show the following interface: impulse equivalent setting wizard, and then press

Equivalent guide				
X Equivalent Set				
Y Equivalent Set				
Next step: NEXT				
Exit:	CAN			

确定

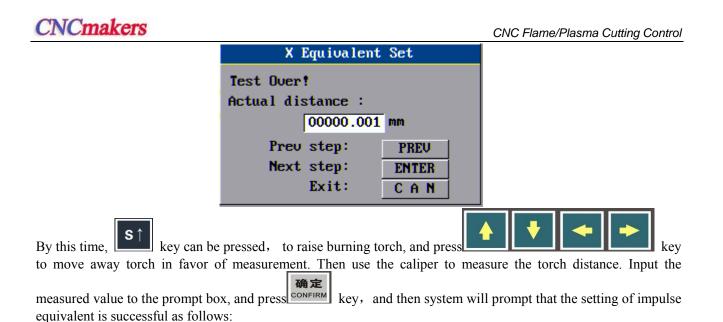
key to set impulse equivalents of shaft X and shaft Y in this interface. Then keyboard sets Press impulse equivalents of shaft X and shaft Y respectively. Here "Impulse equivalents setting of shaft X" is selected as

example: when cursor moves to "Impulse equivalents setting of shaft X", if key is pressed, upon the prompt,

the setting is cancelled; if is pressed, the next step setting will be shown with the interface as follows:

X Equivalent Set				
Input referenced data first				
Testing distance +01000 mm				
Ref equivalent 0.005000 mmpp				
Prev step:	PREV			
Next step:	NEXT			
Exit:	CAN			

Here it is ok to use the default value; however, the matching with actual working table should be considered for "Movement distance setting of shaft X", to prevent the burning torch to move out of working table, or collide other positions. If default 1000mm length is not used, other appropriate lengths can be set by you own. If necessary, press


	세기 (55		NEXT	
number keys directly; if cancellation, press	DELETE	key directly. After setting, press		key, and then system
starts to move. Refer to the following picture				

X Equivalent Set	
Testing, please wait	
3,1	
CAN	

Now if pressing

取消

CAN key, the setting is cancelled, with original impulse equivalents reservation; if waiting system,

X Equivalent Set						
Set suces	Set sucess!					
X equivalent						
0.005000	mmpm					
Prev step:	PREV					
Save :	ENTER					
Exit:	CAN					

Press Confirm key to complete the system impulse equivalents setting, and shown on the column of parameters impulse equivalents automatically. Likewise, Impulse equivalents setting of shaft Y can be set with the same method.

Note: Usually a little tolerance exists between the impulse equivalents of shaft X and shaft Y on a machine. Thereby, their values should be respectively set during the commissioning (it is strongly recommended that impulse equivalents are adjusted to be same).

After completion of whole parameters settings in the parameter setting interface, press

to save settings,

F4

and prompt appears in the system: "Parameters are saved and press any key to return". Then press any key with successful saving of parameters. Until now, parameter setting in the main interface has been completed.

2.4 Functional parameters testing:

After the parameters are saved, press **F3** to continue setting speed parameters as follows: Only start speed, the first section acceleration: processing speed limit (same as the processing limit speed in parameters setting main interface), manual speed limit (the maximum movable speed at the time of manual movement), creep speed, and plasma HI/LO speed should be set upon the graphic representation. Among them, start speed and the first section acceleration should be tested repeatedly after setting, until the vibration of machine reduces to the minimum or none. Here the start speed can be set to be 400mmpm, and the first section acceleration can be set to be 50mG.

Please refer to the following picture.

Flame/Plasma/Fluid CCSV0.2.23 Systime 05:20:23								
		Speed parameterFlame						
Start-up/Corner speed	00600	mmpm						
First sect Acc	00100	mG						
First sect speed	00000	ոտքա						
Second sect Acc	00000	nG						
LimitSpeed	02000	mmpm						
Manual speed limit	02000	mmpm						
Free Speed	03000	mmpm						
Back Para Speed	03000	mmpm						
Low speed	030	mmpm						
Least corner speed	00000	mmpm						
Fast R-zero speed	00000	mmpm						
Slow R-zero speed	00000	mmpm						
crawling speed	025	Per cutting speed						
Hi/Lo speed	080	Per cutting speed						
In-corner distance	00000	mm						
Out-corner distance	00000	mm						
Home Machine S	peed	Setting I/O Set LogicPare	a Save	Return				

Parameters explanation:

- 1. **Start speed/corner speed**: the speed of the earliest start to set burning torch;
- 2. **First sect Acc**: the first acceleration in the system, and generally when the linear acceleration is adopted, it is ok to only set this parameter;
- 3. **First sect speed**: the acceleration is set to the first speed point, and generally it supports the first section acceleration (currently this function is unavailable);
- 4. **Second sect Acc**: the second section acceleration is set. Now the first section acceleration is its start speed (currently this function is unavailable).
- 5. **Limit Speed:** The max. speed which can be reached by machine when setting process, and the actual speed is equal with this speed multiplied by speed ratio.
- 6. **Manual speed limit**: The max. speed which can be reached by machine when setting manual operation, and the actual speed is equal with this speed multiplied by speed ratio.
- 7. Free speed: The automatic idle motion speed in the system during the processing.
- 8. Back Para speed: The speed back to the processing start points.
- 9. **Fast R- zero speed**: When returning to zero speed, firstly fast return to zero speed is used for movement, and then stop after touching the switch. Later slow return to zero speed can be used to leave until the signal disappears. It is different with "Back to the reference speed".
- 10. **Crawling speed**: the slow forward movement of machine tools when punching. Now this confirmed speed parameter can be used with expression in percentage.
- 11. Hi/Lo speed: A speed limit is confirmed for this parameter. When cutting speed reduces to the lower than this speed limit, output burning torch height prohibits this signal; when cutting speed accelerates to a higher than this speed limit, output height allows this signal.

Plasma into / out of the corner distances: This parameter is used to confirm the distance range. Under the

situation of not using cutting gap, when machine enters into this range, output height prohibition and allowance signals are set and it is ok to set the system to be zero.

The above parameters adopt default values without setting.

Until now, speed parameters and relevant parameters are set completely.

12. After setting, press **F7** to save data, and after it, continue pressing functional key **F4** to conduct the system-related setting, and then enter into the interface as follows:

F	Flame/Plasma/Fluid CCSV0.2.23 Systime 05:20:42							
	Systerm setting							
Axis	X≠Y≠Z	Manua l	Self lock					
Cutstyle	Three	Language	English					
Time	SysTime	Inch	mm					
KeyStyle	Shift	Cut Notice	Pop Up					
FireStyle	A11	Pause Output	CloseSome					
Ex ctrl	no							
Home Machin	e Speed	Setting	I/O Set LogicPa	ra Save	Return			

Other setting interface

Parameters explanation:

- 1. **Axis:** it is used to set the coaxial function of machine, for using two motor controlling one shaft. Uncoaxiality refers to the situation of one same motor controlling shaft X and shaft Y respectively. "XZ coaxiality" refer to the situation of shaft X controlled with two motors, and another motor of shaft X controlled by shaft Z output; "YZ coaxiality" refer to the situation of shaft Y controlled with two motors, and another motor of shaft Y controlled by shaft Z output;
- 2. **Manual:** A method is adopted when the burning torch is moved under the manual operation situation. Self-locking means that burning torch starts to move with eight directions, when

are pressed in the manual operation

interface. After releasing, the torch still keeps moving. Then press these directional keys or **N**, it will stop moving. "JOG" means that torch starts to move with these eight directions, when these eight directional keys are press to move it; it will stop after release.

3. **Cut style**: Switchable cutting types. Currently only three types are available: "One" means ony one cutting type default; "Two" means two switchable cutting type in the system – "Flame" and "Plasma"; "Three"

means three switchable cutting type - Flame", "Plasma", and "Preview" three functions.

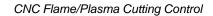
4. **Language**: Two default languages: Chinese and English. If other languages are required, access "system/ADT/File folder" to decentralize U16.bin and mult.txt two configuration files.

- 5. **Input method**: Two methods: switch input and multiplex input. It is recommended to use switch input method.
- 6. **Fire style**: Three modes: once ignition, ignition for every time, and non-ignition with control of ignition signal.
- 7. **Cut Notice**: Select whether the cutting needs to confirm to be started. If pop-up prompt is selected, the prompt box will pop up after pressing Start key.
- 8. **Pause out put port**: After Pause is selected, totally off or partial off can be confirmed.

I/O setting

Flame/Plasma/Fluid CCSV0.2.23 Systime 06:25:36								
	I/O setting							
Input IN	1(0~59)	Input I	1(0~5)) Output OL	IT (0~3	5) Outpu	t OUT(0~35)	
limit X+	0	Fast Stop	10	Gas	0	All Cont	trol 6	
limit X-	8	Pause	3	Torch up	1			
limit Y+	1	Manual X+	4	Torch down	9			
limit Y-	9	Manual X-	12	Fire	2			
limit Z+	16	Manual Y+	5	Cutting	8			
limit Z-	24	Manual Y-	13	Preheat	11			
limit A+	17	Manual F+	6	3-peroxy	10			
limit A-	25	Manual F-	14	H-preheat	3			
X stop	18	Start	11	Height Ctrl	13			
Y stop	19			1-peroxy	4			
Z stop	20			2-peroxy	15			
A stop	21			Blow Ctrl	14			
ArcV detect	2			Cutstyle	12			
Init Local	7			Fram H Ctrl	5			
Home Mach	ine	Speed Se	ettin	g I/O Set	Logicl	Para Sa	ive Return	

I/O function allows you to set the input and output of the system by own; however, it is required to match with cutter's external interface. The mark numbers here are not line number (i.e. socket no.), but IN number and OUT number. Please refer to the hardware instruction for the corresponding relation between line number and OUT/IN numbers. Currently system input supports 36 terminals, and output supports 16 terminals; when terminal number setting exceeds the range, a prompt will pop up on the down right. Press "Save setting" to save the changed settings, and the changed interface can be used. This function is produced for future maintenance; if one interface is broken, it can be repaired here, instead of returning the all machine for repair.


Note: It is recommended to not repair the interface under the situation of interface in good condition, to avoid creating confusion under the situation of not knowing the whole cutter. Certainly, if you totally understand this mechanism and cutter, you can set it at random upon the requirement.

Logic parameters:

Fla	me/Plasma/Fluid CCSV0.2.23	Systime 06:25:41
	Logic setting	
X stop level Y stop Y stop level Z stop Z stop level A stop A stop level	0 0-off, 1-on Are de 0 0-L, 1-H Imit 10 0 0-off, 1-on Urgent 0 0-L, 1-H Pause : 0 0-off, 1-on Servo A 0 0-L, 1-H Imit 10 0 <td< th=""><th>tect level 0 0-L, 1-H ocal level 0 0-L, 1-H stop level 0 0-L, 1-H stop level 0 0-L, 1-H larm leveX 0 0-L, 1-H larm leveY 0 0-L, 1-H larm leveZ 0 0-L, 1-H larm leveA 0 0-L, 1-H</th></td<>	tect level 0 0-L, 1-H ocal level 0 0-L, 1-H stop level 0 0-L, 1-H stop level 0 0-L, 1-H larm leveX 0 0-L, 1-H larm leveY 0 0-L, 1-H larm leveZ 0 0-L, 1-H larm leveA 0 0-L, 1-H
Output level	•	
Home Machine	Speed Setting I/O Set	LogicPara Save Return

The limit, logic level, and valid signal in the machine are set here, to be capable to use in terms of the instruction.

- 1. **X stop** (Whether STOPO signal of Shaft X is valid): When STOPO signal is connected with machine, and it is valid, the machine will send a signal of hardware stop; if this signal is not applicable, this can be set as 0. Shaft Y, Z, and A are same as the above instruction. (this functional system is temporally shielded).
- 2. **X stop level**: (Shaft X stop logic level): the logic level is stopped by Shaft X; 0 low level stop, and high level under the normal situation; 1- high level stop, and low level under the normal situation. Shaft Y, Z, and A are same as the above instruction. (This functional system is temporally shielded).
- 3. X limit level: (Whether Shaft X limit is valid): here it refers to whether hardware limit is valid. 0 valid; 1 invalid. Shaft Y, Z, and A are same as the above instruction.
- 4. **X limit signal** (Shaft X limit logic level): it refers to the limit logic level. 0 low level valid; 1- high level. Shaft Y, Z, and A are same as the above instruction.
- 5. **Input/output level** (Input and output valid logic level): It refers to general input and output ports (IN and OUT numbers) and input and output level. When 0 represents low level valid, 1 represents high level valid.
- 6. Arcs detect level (Arc voltage detection level): Arc voltage detection enable port is set as low level, normal ON, and valid or low level, normal OFF, and valid.
- 7. **Init local level**: Initial positioning level port is set as low level, normal ON, and valid or low level, normal OFF, and valid.
- 8. **Urgent stop level**: Emergency input port is set as low level, normal ON, and valid or low level, normal OFF, and valid.
- 9. **Pause signal level:** Pause signal port is set as low level, normal ON, and valid or low level, normal OFF, and valid.
- 10. **Servo alarm level**: Servo alarm signal is set as low level, normal ON, and valid or low level, normal OFF, and 40 -

> 2.5 Cutting process parameters test

Return to Parameter setting main page after settings, and press functional key to enter the process parameter setting interface as follows. Currently two cutting modes are available in the system - flame cutting process and plasma cutting process. (Water cutting is a system reserved option, and is not available for the moment).

Flame:

F	lame/Plasma/Fluid CCSV0.2.23	Systine 06:28:39
	Flame Control	
	delay00100psecFdelay00000psecPreheat main	irer On
	delay 00100 psec Multi-perfor	
	de lay 00100 psec de lay 00000 psec	
Torch up	de lay 00100 psec	
	delay 00100 psec delay 00100 psec	
H-Torch down	de lay 00100 psec	
	delay 00000 psec delay 00000 psec	
	press [SHIFT] key to switch co	lumn
	Press [Manual] key to view the timin	
Home Flame	Plasma WaterJet	Mark 1 Save Return

Parameters explanation:

- 1. Fire delay: This output signal keeps valid time for every ignition;
- 2. Preheat delay: For the machine with low preheats function, this parameter setting output low preheat signal time prior to high preheat setting.
- 3. H-preheat delay: Output the high preheat signal time before setting every perforation.

pressed to extend preheat time at the time of high preheat, and press key to stop preheat and start to process.

开始

4. Perforated delay: Delay duration before burning torch descanting to cutting height, after setting cutting

valid.

oxygen.

- 5. Crawl time: Operational time after setting perforation at the creep speed, which is set in the speed parameter interface, to be expressed by cutting speed percentage. Machinie accelerates to the set cutting speed after creep time, and creep process can heat cutting surface and make perforation to be more thorough.
- 6. Torch up delay: Valid time to be kept for burning torch ascending signal after setting every cutting.
- 7. Torch down delay: Valid time to be kept for burning torch decanting signal before setting every start cutting.
- 8. H-Torch up delay: Valid time to be kept for burning torch ascending signal during setting perforation.
- 9. H-Torch down delay: Valid time to be kept for burning torch descanting signal during setting perforation.
- 10. Cutting stop delay: Valid time to be kept for cutting control signal after setting every cutting, and generally it can be set as 0.
- 11. Blowing delay: The time of burning torch pause and blowing after setting every cutting.
- 12. Multi-perforated: Set whether the perforation mode will select multi-perforated mode. This function can be used for general cutting thick plate with low preheat units in the system. If the cutting plate is thin, it is ok to use general perforation; if there is no preheat units, please do not use this function.

key to view timing diagram as follows:

Flame	/Plasma/Fluid CCSV0.2.23	SysTime	06:28:45
	Timing Chart of Flame Control		
			7
Machine movement			
Torch up			
Torch down			
Fire			
Preheat			
PunchHole			
T unchilo IC			
	Press [Manual] key to look back		
Home Flame	Plasma WaterJet Mark 1	Save	Return

If the right parameters need to set, press shift key to move cursor to the right parameter box, and then press

to select. When the key is pressed down, it means this is selected, and then save

Plasma:

Flame	CCSV1.0	Systime 00:17:57
F	lasma Control	
Blowing delay 00000 pse	c ArcV detect	On
Perforated delay 00100 pse	c Adjustment enablel	Off
Crawl delay 00000 pse		
Cutting stop delay 00000 pse	c Torch up with punch	Off
Torch local up delay 00000 pse		
Torch up delay 00100 pse		
Torch down delay 00100 pse		
H-Torch up delay 00100 pse		
H-Torch down delay 00100 pse		
Start arc delay 00100 pse	С	
Dis befor close-up 00000 mm		
Dis Lag open 00000 mm		
press [SH]	IFT] key to switch column	
_	key to view the timing di	
Home Flame Plasma Wat	erJet Mark	1 Save Return

Parameters explanation:

- 1. Blowing delay : The blowing time between cutting action completion to burning gun ascending;
- 2. **Perforated delay** (Perforation time): Set the time between burning torches descanting completion to machine movement, to ensure perforation to be finished completely.
- 3. **Crawl time** (Creep time): Set the time of machine at the creep speed after perforation, and creep speed can be set in the speed parameter interface with the expression by percentage. Machine will accelerate to the set cutting speed after creep time.
- 4. **Cutting stop delay** (cutting OFF time): Set the valid time to be kept for cutting control signal after setting every cutting. Negative number is used to represent that closed cutting control signal can be maximally set -1 second before cutting. When the cutting is completed, cutting arc will continue keeping due to cutting gas lag and stop, to make cutting path to be wide. Thus this parameter is used to compensate the gas lag and stop, and generally it can be set as 0.
- 5. **Torch local up delay** (Burning torch positioning ascending time): Set the time of positioning ascending at the time of initial positioning.
- 6. **Torch up delay** (Burning torch ascending time): It is used to confirm the time of torch ascending. If auto height regulation control system is used, this parameter can be set as 0.
- 7. **Torch down delay** (Burning torch descanting time): It is used to confirm the time of torch descanting. If auto height regulation control system is used, this parameter can be set as 0.
- 8. **H-torch up delay** (Perforation burning torch ascending time)
- 9. H-torch down delay (Perforation burning torch descanting time)

- 10. **Start arc delay** (Arcing time): The time between arcing time signaling setting to arcing success. Under the situation of auto height regulation control system, this parameter can be set as 0.
- 11. **Dis before close-up** (Increase distance of early closing): Increase the distance of early closing for a system during cutting a part;
- 12. ArcV detect (Arc voltage detection): Whether arc feedback signal mark is allowed.
- 13. Adjustment enable (Burning torch height permit): "On" need to set for the system with auto height regulation control system; "Off" need to be set for the system without auto height regulation control system, or system preferring not to use height regulation control system.

Press key to view timing diagram.

	Flame	∕Plasma∕F	luid CCSVO.	2.23	\$	SysTime	06:28:54
		Timir	ng Chart of	Plasma Con	ntrol		
							1
Machine	movement						
	Torch up						
To	orch down						
	Cutting						
Heigl	nt forbid					_	
]
		Press	[Manual] k	eu to look	hack		
		Tress	Inanuari A		DUCK		
Home	Flame	Plasma	WaterJet		Mark 1	Save	Return

Plasma cutting timing diagram

转换

If the right parameters need to set, press key to move cursor to the right parameter box, and then press

to select. When the key is pressed down, it means this is selected, and then save

the parameter after setting.

Parameters for flame/plasma require to be considered overall upon field situation, steel plate and plate thickness etc., which will be specified in the following chapters. Now, relevant process parameters have been completely set.

Chapter III: Drive and Motor Startup

> 3.1 Stepper drive startup

Example Q2BYG808M

1.1 Setup breakdown:

Set a dip switch combination state to correspond to the number of segmentation and pulses per revolution

Segmentation	2	4	8	16	32	64	128	256	5	10	25	50	125	250
P/r	400	800	1600	3200	6400	12800	25600	51200	1000	2000	5000	10000	25000	50000
SW1	ON	ON	ON	ON	ON	ON	ON	ON	OFF	OFF	OFF	OFF	OFF	OFF
SW2	ON	OFF	ON	OFF	ON	OFF	ON	OFF	ON	ON	OFF	OFF	ON	OFF
SW3	ON	ON	OFF	OFF	ON	ON	OFF	OFF	ON	OFF	ON	OFF	ON	ON
SW4	ON	ON	ON	ON	OFF	OFF	OFF	OFF	ON	ON	ON	ON	OFF	OFF

1.2 Working current selection

Set a dip switch combination state to correspond to the current values in the following table. Generally motor rated current is set to be 1.2 times.

Please note that do not set current when drive is power-on.

Working current selection:

Working current	2. 8A	3. 5A	4. 2A	4. 9A	5. 7A	6. 4A	7. 0A	7. 7A
SW6	ON	OFF	ON	OFF	ON	OFF	ON	OFF
SW7	ON	ON	OFF	OFF	ON	ON	OFF	OFF
SW8	ON	ON	ON	ON	OFF	OFF	OFF	OFF

1.3 Half current /full current setup:

SW5	
ON	Half current
OFF	Full current

Dip switch is shown as follows:

Correspond to SW1 \sim SW8 in the table to dip up in terms of the following picture, which refers to OFF state, and dip down to refer to ON state.

CNC Flame/Plasma Cutting Control

Figure 1: Toggle switch

> 3.2 Servo drive startup

The examples for JIABAO QS6 and Japanese Panasonic servo:

	JIABAO QS6		PanasonicA5		
	Parameter No.	Ref. value	Ref. No.	Ref. value	
Parameter password	P1	1	无		
Enable method	P5	0 external 1 internal		External enable is used.	
Numerator of electronics gear	P12	1	Pr0.08	10000P/r (combination of pr0.08\pr0.09	
Denominator of electronics gear	P13	1		\pr0.10 Three parameters set the pulses per revolution)	
Position loop gain	psition loop gain P16 100		Pr1.01	When PR0.02 is 1, it	
Velocity loop gain	P21	100	Pr1.00	plays the role to adjust rigidity.	
Rotation direction setup	P11	0 not negated 1 negated	Pr0.00	0	
Command mode	P10	0 pulse + direction	Pr0.07/Pr006 combination	0	
Control mode	P4	0 position	Pr0.01	0 (Position control)	
Alarm mode	Р9	0 normal OFF type 1normal ON type		Normal OFF type	

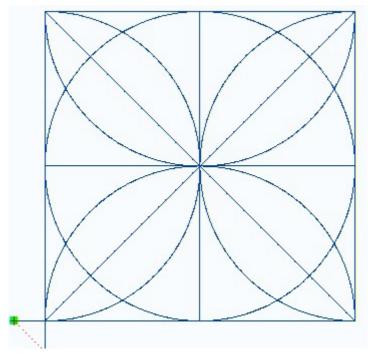
Parameters save procedure for QS6:

Press "MODE" to enter parameter writing mode "EP-" in the normal display mode, and then press "ENTER" for three seconds to write parameters into EEPROM.

Parameters save procedure for Panasonic A5:

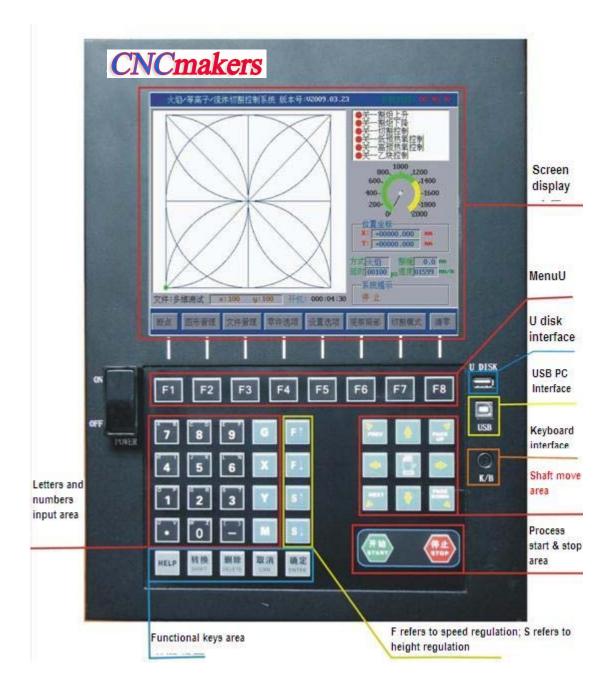
Press "MODE" to enter "EE-SET" mode in the normal display mode, and press "S" to switch to execute display

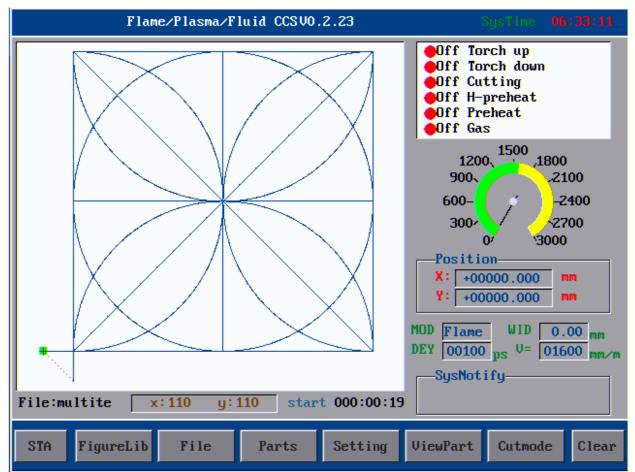
"EEP-", and then press UP key until **5 & R - &**. appears.


Chapter IV: Draw line Detection

1. Please prepare the drawing pin as follows:

3. Prepare glass plate or other plates, on which white powder is applied. Draw the lines on the plate upon the "multidimensional test" in the graphic library. Measure the square side length, to verify whether precision parameter is correct; Measure diagonal line length, to verify the verticality of horizontal and vertical shafts; Detect the machine's performance and circle effect at the time of corner turning.




Section III: Software

Chapter I: Introduction of Operational Panel and Main Interface

> 1 Introduction of panel

> 2. LCD main screen introduction

The above picture is the main screen of CNC6500 software, and the following functions can be done here:

- 1. Switch cutting mode;
- 2. Real-time display cutting track;
- 3. Zoom in and out the current processing graph.

This function is used to view parts locality, and under the situation of locality, press **where the set of the**

the situation of the overall part graph, press

key to correspond to burning torch moving

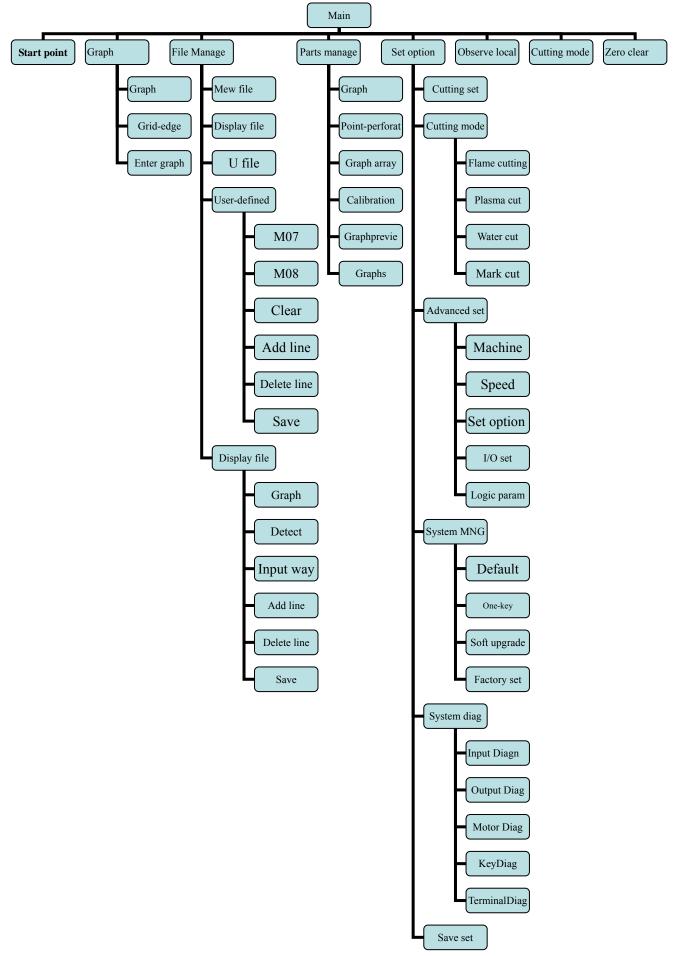
.

around, and extend other four directions **around** movement feature. Under the situation to view the overall graph, it is invalid to press number keyboard, as it has other function to be introduced later.

4. Capable to clear the current postion;

5. Capable to facilitate to switch processing start position;

Start point function: the corresponding postion of positioning burning torch before processign start when calling the graph. Continue pressing F1 key to switch the corresponding position of cutting start point, with five points: graphic start point, upper left, upper right, lower left, and lower right.


6. Capable to set cutting speed.

转换

Press stiff to quickly set the cutting speed in the main interface.

Chapter II Software Menu Structure

F8

The cascading menu structure is adopted for CNC6500. Press menu key to correspond to menu with the following operations through system menu:

When entering the menu in a certain interface, press

to return to the movement main page or press

to return to the previous menu.

Chapter III: Software Function and Technical Parameters

3.1 Software menu

Function	Details	Spec.
Technology type	Plasma, flame, powder, and water cuttings	With
Graphic library feature	With plenty of parts graphs, to do the edition and automatically generate program	With
rectangle edge-shared feature	Edge-shared cutting	With
Perfect cutting gap compensation feature	Apply for a variety of shaped graph compensation with wide adaptability	With
Breakpoints recovery feature	Cutting data protection when power-off during processing	With
Graphic processing feature	Processing graphic rotation and X, Y mirror images, line	With
	selection, point selection, steel plate calibration, size, array, mal-position arrangement, and zoom etc.	
Real-time track display feature	Real-time track display	With
Plasma arc detection, initial	Stable and reliable process control with more reasonable corner	With
positioning, and corner signal control features	cutting	
Track continuous back-off feature	Facilitate return along the route for cutting repair after flame off	With
Pause feature	Capable to return Pause position when translocation generates	With
	after Pause, to continue implementing program	
Perforation point selection feature	Cutting can be conducted from start point to leap into the	With
	specified perforation point	
Diagnosis feature	Help the customer to rapidly troubleshoot machine problems	With
User-friendly USB connection	Read file directly by U disk with file folder feature and	With
feature	convenient field operation	
Parameters backup and restore feature	System default setting and restore features to better protect system parameters	With
User-defined input and output	Achieve arbitrary designations on the software for all of ports.	With
ports feature		
User-defined M Complex	User-defined M Complex instruction code to extend system	With

CNCmakers	CNC Flame/Plasma Cut	ting Control
instruction code	processing technology	
Free switch for Shaft X and Shaft	Complete horizontal and vertical switch on the software	With
Y		
Self-locked JOG flexible	Correct point positions easily and accurately by JOG; Facilitate	With
switching	long distance movement by self-locking	
Multi-language display support	Support English and Chinese	With
Multi-language input method	Better identify the file name	With
support		

> 3.2 Particular introduction for features

> 3.2.1 Technology type

Flame/Plasma/Fluid CCSV0.2.23	SysTime	06:28:49				
Plasma Control						
Blowing delay 00000 psec ArcV detect	On					
Perforated delay 00100 psec Adjustment enable1	Off					
Crawl delay 00000 psec Init Local	Off					
Cutting stop delay 00000 psec Torch up with punch	Dff					
Porch local up delay 00000 psec						
Torch up delay 00100 psec						
Torch down delay 00100 psec						
H-Torch up delay 00100 psec						
H-Torch down delay 00100 psec						
Start arc delay 00100 psec						
Dis befor close-up 00000 mm						
Dis Lag open 00000 mm						
press [SHIFT] key to switch column						
Press [Manual] key to view the timing diagram						
Home Flame Plasma WaterJet Mark 1	. Save	Return				

There are four cutting technologies in CNC6500:

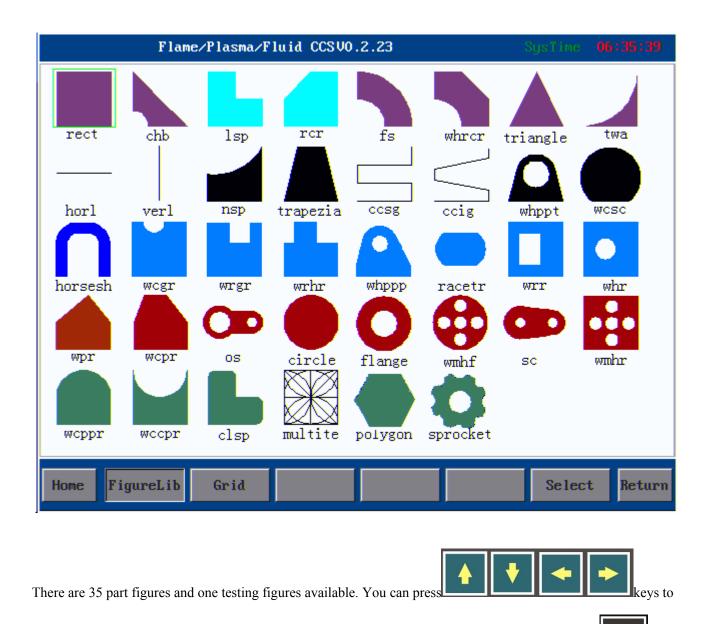
- 1. Flame cutting
- 2. Plasma

3. Water Jet

4. With powder scribing supporting function to satisfy powder spraying offset requirement.

The flows of various technologies are as follows:

1. Flame cutting


Refer to User Manual page 75 $\,\sim\,$ 76 for details;

2. Plasma cutting Refer to User Manual page 75 \sim 76 for details;

3. Mark 1(Powder scribing)

With powder scribing supporting function, powder spraying offset function, and parameters setup.

> 3.2.2 Graphic library function

move cursor to select the corresponding figures. When you have selected the rectangle, you can press

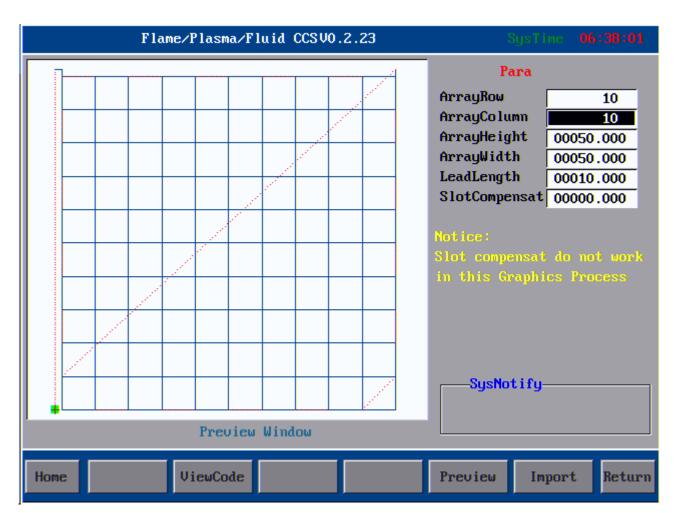
or

确定

confirm key to switch to the rectangle parameters setup interface, for rectangle processing.

Here we take a figure as an example as follows:

Flame/Plasma/Fluid CCSV0.2.23	Systime 06:37:33
	PartType Piecel Rect W 00100.000 mm Rect H 00100.000 mm Lead In 00010.000 mm Lead Out 00010.000 mm Empty movX 00000.000 mm Empty movY 00000.000 mm
Status Bar:	
Home Parts ViewCode	Preview Import Return
This is the rectangle setup parameters interface. After setting	part width, height and type, press


F7 to import this graph and system will automatically preview graph. When the graph is confirmed, press jump into main processing interface. Under the mode of flame cutting, press START key to conduct flame cutting. Under the situation of plasma cutting mode, plasma cutting shall be executed.

> 3.2.3 Rectangle edge-shared feature

Grid cutting is a special cutting mode, also called as grid edge-shared cutting, to be able to maximally save plate material and time. However, it is different with other parts, and generally used as the cutting material of square plate, whose parameter setup and compensation method are different with general graph, similar with parts array,

F3

with a little distinctions. Press key in the graphic management interface, to enter grid cutting interface as follows:

As the picture to show:

Array Row: how many rectangles on every column of grid;

Array Column: how many rectangles on every line of grid;

Array Height: net width of grid, that is, rectangle size without cutting gap compensation;

Array Width: the lengths of lead-in and lead-our wires, and these two lengths generally are same.

Slot Compensate: Grid is a particular graph requiring the special processing, whose compensation is different with the compensation principle of system setup. Therefore, if cutting gap compensation parameters need to set here, the compensation in the system parameters setup is invalid for it. If its compensation is forcibly added on it, the error will produce. Thus, the compensation parameters in system automatically shield should be disregarded by the user.

After setting, press [Import], the graph will automatically return to the main processing interface of system. Meanwhile, press [Viewcode] to see the current graphic processing code, which is identical with the graph in graphic library.

> 3.2.4 Perfect cutting gap compensation feature

CNC6500 has cutting gap compensation feature. The size deviation resulted from compensation cutting gap. The setup procedure for cutting gap is as follows:

Enter setting option – input compensation values in the corresponding cutting gap compensation option box, and save them.

Flame/Plasma/Fluid CCSV0.2.23	SysTime	05:18:41
Cutset		
Measure		
Measure X 00000.000 mm Y 00000.000 mm		
MOD		
Cutmode Flame M07 Default M08 Default		
Speed		
LimitSpeed 02000 mmpm		
Compensate		
SlotCompen 00.00 mm S-cpst 00.00 mm		
Angle +00.000 deg (-90 °,90 °)		
Home Cutset Cutstyle Advanced SysManag SysDiagn	Save	Return

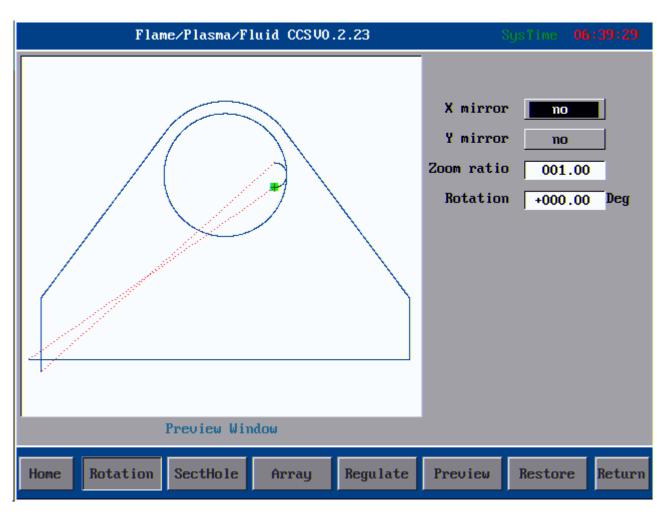
> 3.2.5 Breakpoints (Spot) recovery feature

Automatic save and automatic restore modes are adopted for breakpoints recovery feature of CNC6500:

- 1. Power supply is able to memorize automatically cutting breakpoints data in the image of movement cutting;
- 2. Previous coordinate prior to power-off will be restored automatically after re-connection of power, to provide the convenience to the user.

> 3.2.6 Graphic processing feature

Graphic processing feature is composed of graphic rotation, mirroring, array, and plate calibration processing, with details as follows:


3.2.6-1 Graphic rotation

Graphic rotation feature refers to the following operations: rotate graph, mirror, and zoom etc. and their functions are introduced as follows:

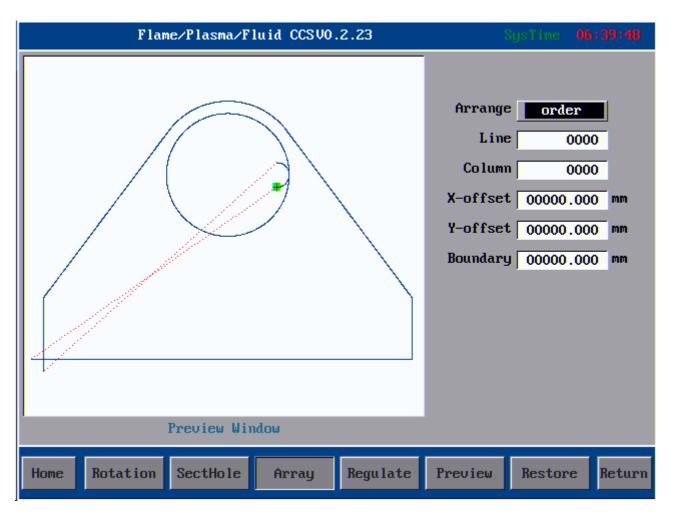
In **mirroring**, X mirror is a duplicated copy on the symmetric direction with Shaft Y as baseline; likewise, Y mirror is a duplicated copy on the symmetric direction with Shaft X as baseline; XY mirror is a duplicated copy on the -58-

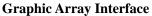
symmetric direction with Shaft Y or Shaft X forming 45° angle straight line as baseline. **Rotation** is a rotated angle on the clockwise or counter-clockwise direction for processing graph, where system defaults positive angle as counter-clockwise, and negative angle as clockwise. Zoom is zoom in and zoom out the graph upon the actual size; when its value >1, it means zoom in; when 0 < its value < 1, it means zoom out. Other values are pointless.

The following picture to show the overall interface:

Graphic rotation

	L
瑞士	
WHILE	
CONFIRM	


After inputting every parameter, under the situation of non-mirror selection, press key and the graph shall conduct mirror, zoom, and rotation processing in terms of parameters simultaneously. When inputting wrong or invalid parameters, there is prompt to appear on the preview interface, or restore the part.


3.2.6-2 Graphic array

Press **F4** key to enter the graphic array functional interface. There are two methods: vertical array and staggered array. Vertical array is to arrange every graph with the method of justify full; however, staggered array is not a justified arrangement, but with a certain method, to meet different processing requirements. Of course, array only can arrange graph in a simple way, and definitely fails to achieve the whole needs of customers. If complete array is required, the professional nesting software should be prepared. After line number, column number, spacing,

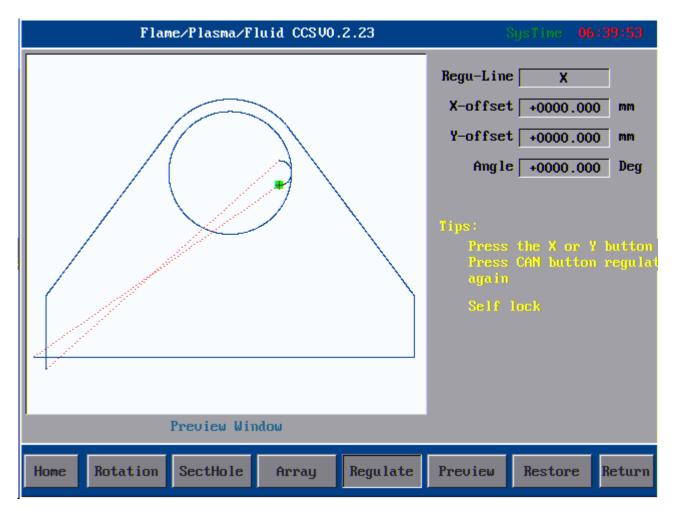
and offset are input in terms of prompt, press confirm to show the following picture.

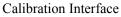
确定

Basic operation:

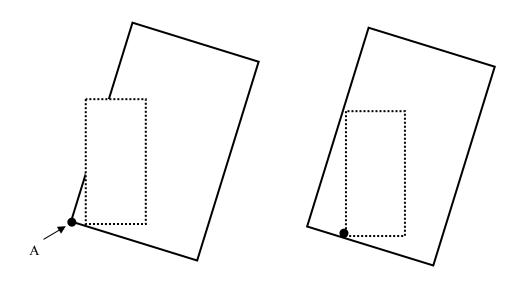
You have to select one of the array methods, either vertical array or staggered array, and then enter the numbers of line and column. The limited numbers for line and column of the software are both 9999. You can set the numbers combining your actual processing demand and the size of part you are processing. This number is the limit value, and cannot be achieved in practical situation.

X- offset: It is the offset distance between two lateral figures. If you do not input any offset value (that is, the offset value is 0), the system will calculate the offset value as the figure width (unit in MM) automatically. If you have entered an offset value, even 0.01MM, the system will calculate according to this value instead of default figure width. In this situation, you have to calculate the lateral offset value carefully to satisfy the processing requirement of lateral distance between two figures.


Y- offset: It is the offset distance between two longitudinal figures. If you do not input any offset value (that is, the offset value is 0), the system will calculate the offset value as the figure height (unit in MM) automatically. If you have entered an off-set value, even 0.01MM, the system will calculate according to this value instead of default figure height. In this situation, you have to calculate the longitudinal offset value carefully to satisfy the processing requirement of longitudinal distance between two figures.


Boundary: As the name implies, it refers to the width of board you would waste during the processing. For example during the normal processing, perforating, boundary perforating and lead-wire operations would waste some steel boards, which is called waste boundary value. During the arraying, you should calculate and input the -60 -

value carefully to save the board to the largest extend.


We should note that figure rotating and array functions cannot be used at the same time. Array should be done before the rotating. This operation could only be done once when you are using the resume function.

Calibration function is to calibrate the position of figure and the steel plate to make them in a reasonable relative position. The calibration interface is as picture below.

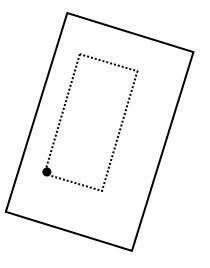
Calibration Principle:

Picture 1

Picture 2

- 1) In Picture 1, the large frame (Real line) is the steel plate, the small frame (Dashed line) is the figure to be cut, and point A is the start point of the cutting gun. If it is cut according to Picture 1, the figure outside may not be cut; and if it is cut when the start point is moved to the middle of the steel plate as Picture 2, obviously it will waste the steel plate.
- 2) At this point, without moving the steel plate, you just have to figure out the slope angle of the plate, and incline the figure to be processed at the corresponding angle before cutting effectively.

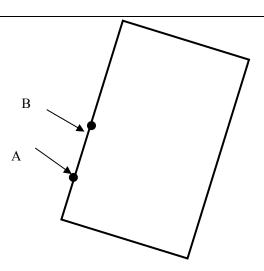
The first Way of calibrating the steel plate: Shaft X is calibration reference edge



1) As above picture, point A is the start point of burning torch. You can figure out the slope angle of the

steel plate by moving the burning torch to any point of its base line. Press

Then, the figure displayed on the controller will be rotated at a certain degree. The position of figure to be processed and the steel plate is shown as follows:


- В А 确定 CONFIRM Pres then, press to confirm. The position of figure to be processed and the steel plate is shown as follows:
- 3) If the steel plate is inclined as follows, then, the calibration method is as below:

The second Way of calibrating the steel plate: Shaft Y is calibration reference edge

The principle of this way is same as the first way, with only difference for calibration reference shaft. Sometimes steel plate on the Shaft X is too short, and therefore we can select the calibration based on Shaft Y.

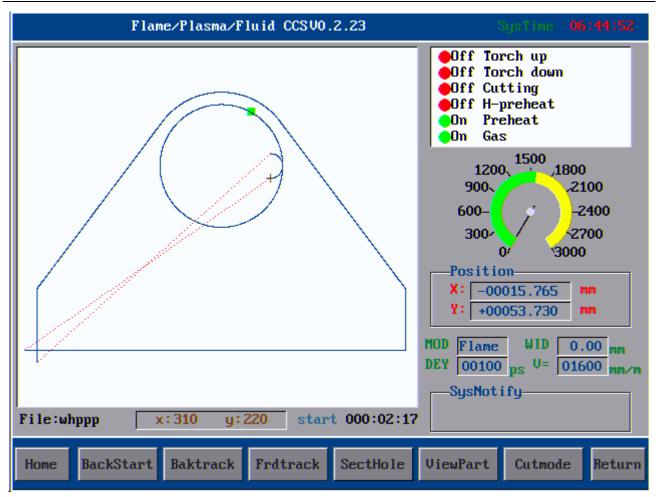
Press before calibration; thus Y will be shown within the calibration reference frame, and burning torch is

After calibration, a message box will pop up to ask whether needing to return the start point, i.e. Point A position when calibration. To avoid multiple calibrations, the calibration angle system after it shall always be kept. If it is necessary to cancel calibration angle or re-calibration, please press "Cancel" key, or manually set the calibration angle to be 0 in the setting option.

Restore

Press **F7** key to enter the restore function, and restore the current figure to original state. In this way, all figures changed by the array or rotation will be restored to the original shape.

> 3.2.7 Real-time track display feature

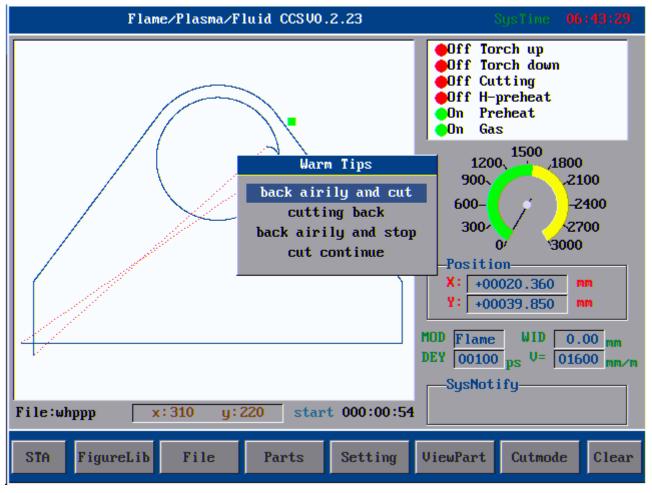

It is able to real-time display track of graphic running, with graphic zooming and other functions.

> 3.2.8 Plasma arc detection, initial positioning, and corner signal control features

It is capable to support most CNC plasma cutting system and meet the requirement of height regulation system, with perfect plasma technology, plasma arc detection, initial positioning, and corner signal control features.

> 3.2.9 Track continuous back-off feature

During the practical cutting, disruption in combustion exists due to the impact of other factors, resulted in cutting incompletion for cutting track. After pause, it should return to disruption point to resume ignition and start cutting, to ensure the completion of cutting. Thereby, forward along the route and return along the route are developed in this system as follows:


3.2.10 Pause feature \geq

开始

When the burning torch is on the movement route, press

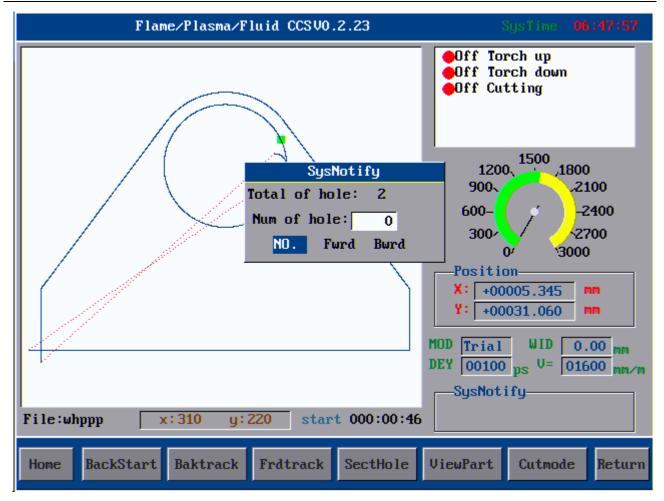
key to start cutting along the route; when pause

torch is moved out of route, press key to pop up the following prompt box:

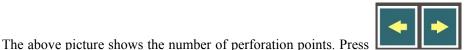
Press keys to move cursor to the specified interface.

As the picture shown, the explanation of menu is as follows:

"Idle stroke back and cut", which means the cutting torch will return to the cutting track automatically and start perforating and cutting.


"Cut directly and return" means to perforate at the current position and cut.

"Idle stroke back and stop" means the cutting torch will stop when idling traveling to part track.


"Continue from the current point" means to cut the next figure from the track you are moving, but the reference point is no longer the original reference point.

> 3.2.11 Perforation point selection feature

Refer to the following picture for the selections of perforation points, back-off perforation point number, forward perforation point number, and perforation point number chosen upon the serial number:

Perforation Point Selection

keys to select "SN", "Forward",

"Back-off" three modes. After data is input, press key, and the prompt "Burning torch positioned in the original point", "Burning torch positioned in the current point" and other functions will come out. Move the cursor to the corresponding item o select perforation point.

确定

Note: "Burning torch positioned in the original point" refers to the burning torch is positioned in the original point; when perforation point is selected, cutting point and burning torch will move to the perforation point selected currently.

"Burning torch positioned in the current point" refers to the burning torch stays still in the current position; when perforation point is selected, the burning torch keeps still, but cutting point on the graph still moves; when processing or other operations start, the burning torch will move forward or backward from the current position.

3.2.12 Diagnosis feature

System diagnosis

Press F2

key to enter port diagnosis interface, and test input ports. Red light: Disconnected. Green light:

Closed. Meanwhile, the system will prompt the name of this terminal. As shown below:

	Flar	Sij	sTime 05:39:14					
	Input port check							
	Port00 🔆	Port01 🔆	Port02 🔆	Port03 🔆	Port04 🔆	Port05 🔆		
	Port06 🔆	Port07 🔆	Port08 \00	Port09 🔆	Port10 🔆	Port11 🔆		
	Port12 🔆	Port13 🔆	Port14 🔆	Port15 🔆	Port16 🔆	Port17 🔆		
	Port18 🔆	Port19 🔆	Port20 🔆	Port21 🔆	Port22 🔆	Port23 🔆		
	Port24 🔆	Port25 🔆	Port26 🔆	Port27 🔆	Port28 🔆	Port29 🔆		
	Port30 🔆	Port31 🔆	Port32 🔆	Port33 🔆	Port34 🔆	Port35 🔆		
	Tij	is: <u>'</u> Ò́;	910	ýý On				
Home	Input	Output	Motor	Button	Terminal	Return		

Interface of input port diagnosis

F3

Press key to enter the interface of output port diagnosis to test the output ports. Red light: Disconnected;

Yellow light: Selected; Green light: Closed. System will prompt the name of this port while selecting the port. (Corresponding to previous I/O setup)

Flame/Plasma/Fluid CCSV0.2.23 Systime 05:14:12						:14:12			
			(Jutput po	rt check	:			
		01124	00.50	01152	01174	01175	01176	011873	
	UTO X	0UT1 	out2 Ö	0U T 3 •¢•	0UT4 .☆	00 15 .☆	oute .œ	0UT7 	
	UT8 ;;;	out9 - 🄆	out10 	0UT11 	out12 	0UT13 	0UT14 🔆	0UT15 🔅	
Tips: Gas Off On(Press[enter]key) OSelect									
Home	Input	Out	put	Motor	Button	Term	inal		Return
Interface of output port diagnosis You can press $F4$ key to enter the interface of motor control diagnosis. Yellow words with orange lake bottom									
indicate that the direction of this axis is selected. Press key and the motor will start to run. You can press key any time to stop the motor. As the following picture shows, the x-axis will be rotated in positive									
direction if you press key, and stop if you press . You can press									

	Flam	e∕Plasma∕Fluid C	CS VO	.2.23		SysTime	06:54:53
		Motor	Con	trol Check			
		\bigotimes	x				
			Y				
			u				
			U				
			V				
			z				
	Tips:	[START]keyr	run		[STOP]key	jstop	
Home	Input	Output Mot	or	Button	Terminal		Return

Interface of motor control diagnosis

You can press

F5 key to enter the key test interface. The corresponding key will have an action and become the

state of being pressed if you press a key. If there is no response when you have pressed a key for several times, it means the key is out of order.

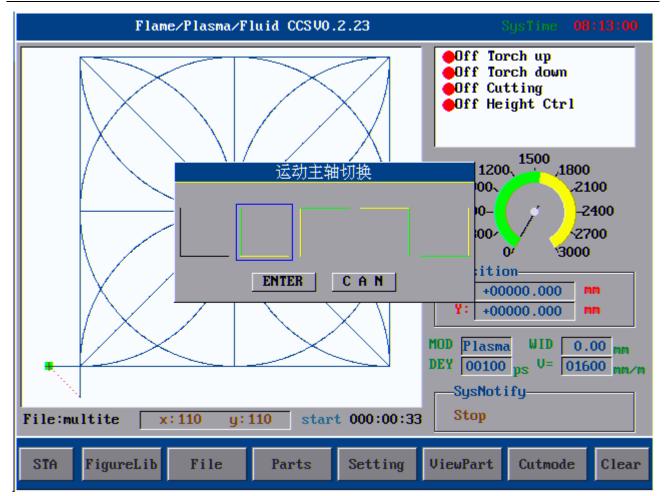
press [CAN] to exit	PS/2 keyboard test>	<mark>05:18:10</mark>

Key test interface

The system diagnosis shows the open hardware resource of the system. In system diagnosis window, you can check the following interfaces:

- 1) Output check: Press key to move the cursor to any position of the 16 photovoltaic isolation outputs, and press [CONFIRM] to change the state of output level. For definitions of all output port symbols, please refer to hardware input/output (definition of output port).
- 2) Input check: It shows the state of the current 16 photovoltaic isolation inputs. Green "C" indicates that

the current port is detected with an input signal; red "??" indicates that there is no set in this port;


yellow "body" indicates that this port is selected. For example, if "Port 00" is detected with an input signal, the red light behind will be changed to green. For definitions of all output port symbols, please refer to hardware input/output (definition of output port).

3) Keyboard check: Press any key on the key panel, and the corresponding key on the screen will have a response. If there is no response if you have pressed the key for several times, or if the key displayed is wrong, it means there is a problem with the system.

> 3.2.13 Free switch for Shaft X and Shaft Y

Quick switch of Shaft X and Shaft Y:

To facilitate the system to keep the consistence of cut shape and system screen on the either side of machine, main shaft switch can be selected. In the interface of movement after start, long press "Cancel" key and pop up movement main shaft switch message box from the system.

The first mode is defaulted by the system. Light green is Y direction; yellow line is X direction; and original point is on the lower left corner of machine. If the second mode is selected, the original point is on the upper left corner of the machine, as so on, original points of other two modes are respectively on the upper right and lower right corners.

Note: Pulse equivalent of Shaft X and Shaft Y should be regulated under the default mode, before main shaft switch.

> 3.2.14 Self-locked JOG flexible switching

JOG and manual methods can be selected when manually moving each shaft in CNC6500,

switch。

This function will be used in three positions of CNC6500:

- 1. Manually operate the screen;
- 2. Main interface;
- 3. Steel plate calibration screen.

> 3.2.15 User-defined input and output ports feature

	Flame.	∕Plasma∕Flui∂	I CCS	V0.2.23		SysTime	06:25:36
			I∕0	setting			
Input IN	1(0~59)	Input If	10759	9) Output O	UT (0~35) Output	OUT(0~35)
limit X+	0	Fast Stop	10	Gas	0	All Contro	ol 6
limit X-	8	Pause	3	Torch up	1		
limit Y+	1	Manual X+	4	Torch down	9		
limit Y-	9	Manual X-	12	Fire	2		
limit Z+	16	Manual Y+	5	Cutting	8		
limit 2-	24	Manual Y-	13	Preheat	11		
limit A+	17	Manual F+	6	3-peroxy	10		
limit A-	25	Manual F-	14	H-preheat	3		
X stop	18	Start	11	Height Ctrl	13		
Y stop	19			1-peroxy	4		
Z stop	20			2-peroxy	15		
A stop	21			Blow Ctrl	14		
ArcV detect	2			Cutstyle	12		
Init Local	7			Fram H Ctrl	5		
Home Mach	ine	Speed Se	ettinț	g I/O Set	LogicPa	ara Save	Return

I/O setup allows you to set the input and output of the system on the condition that they should match the peripheral interface of cutting machine. The marked numerical symbols is not the line number (socket number) but the IN and OUT numbers. For the relationship between line number and OUT/IN number, please refer to the hardware user manual. After the modification, you can press [Save] to save the setup and use the interface you have modified. This function is provided for the convenience of future maintenance. If an interface is broken, you can just make a correction here rather than sending it back for maintenance.

Note: To avoid mix-up due to the lack of understanding on cutting machine, it is suggested not to modify the interface if there is no broken interface; otherwise. You can change the setup as you like if you are familiar with the cutting machine.

> 3.2.16 User-defined M complex instruction

This function is mainly used in device with automatic igniter. You can custom the M08 into M80 (close all output)

to save gas during the idle motion. In edition interface, press **F5** key to enter interface for user-defining M07 and M08 as follows:

123	Flame/Plasma/Flui	a ccsvo.2.23		SysTime	06:57:17
0000:<					
Home M070	CMD MO8CMD	Clear Add	L Delete L	Saue	Return

Interface of user-defined functions

1) [M07 instruction] is user-defined M07 instruction. System default M07 perforating instruction is as follows:

Flame:

- ① Ignition Fixed Cycle, M52
- 2 Burning torch falling (Fixed Cycle), M71
- ③ Preheating on (Fixed Cycle), M74
- ④ Perforating burning torch rising (Fixed Cycle), M72
- ⁵ Cutting oxygen on, M12
- (6) perforating burning torch falling (Fixed Cycle), M73

Plasma:

- A. With height regulation system:
 - ① Enable M22
- ② Arcing M12
- ③ Waiting for arc voltage detection signal (IN0)

After arcing, the height regulator starts performing initial location (With initial location function), perforating and perforating delay automatically, and gives a signal of successful arc voltage detection to the controller.

B. Without height-adjusting system:

^① Arcing, arcing delay M12

^② Perforating, perforating delay

Start the following actions

Users can define the functions of M07 according to their actual demand.

2) [M08 instruction] is user-defined M08 instruction. System default M08 instruction for closing cutting oxygen is as follows:

Flame:

① Cutting oxygen off, M13

② Burning torch rising (Fixed Cycle), M70

Plasma:

① Close striking arc M13

② Close the height regulation control M23

Users can define M08 to M80 (close all output) according to their actual demand. All valves will be closed when performing M08 to save gas.

[Clear]: Clear the data of current line.

[Add line]: Add a new line below the current line.

[Delete line]: Delete the current line.

[Save]: Save the content.

Note: After you have defined M07 and M08 instructions, you should set M07 and M08 in parameter setting as user-defined; otherwise, the instructions would not be effective.

> 3.2.17 Perfect and stable file system

Directly read the file through U disk, file folder function, and convenient on-site operation.

File management

Content display

F3

Press key in main window to enter the file management interface as follows. The left side is the preview

window for graphs in current file, and the right side shows the names of processing files. If a file has several pages,

you can press

123	Flame/Plasma/Fluid (CCSV0.2.23			SysTime	06:57:36
			N	ame	S	ize(bytes)
				圆.CNC 正方形· B喀户 A喀户 SUN~1		60 61
	Preview			-Import Upturn	0-Preview 3-Copy	1-Delete 4-Press
Home	New View file U-d	isk MO	7 m 08	Look	in Impo	rt Return

Interface of File Management

There is prompt info on the right bottom indicating how to operate.

confirm key to load the current file to processing interface and process. Note:

This key does not work when it is pressed under the catalog of folder, HD, or removable drive, for only a file other than a folder or HD can be operated; otherwise, the system will give an error prompt.

Delete: Number key "1"; delete the current selected processing files and the entire folder;

Load file: You can press

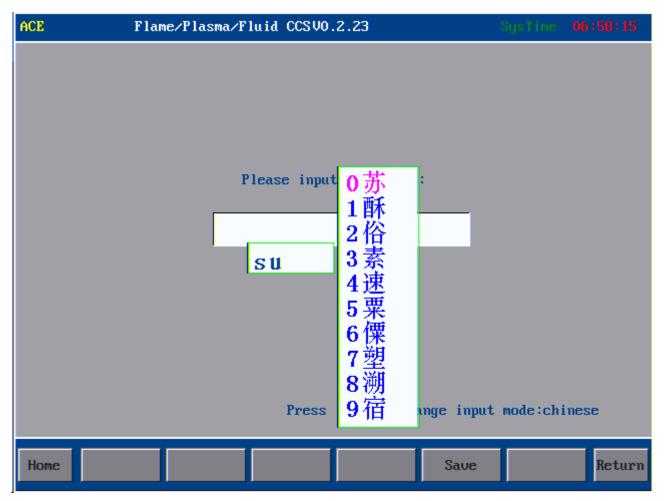
Copy to system: Number key "2", copy the processing files or folders to memory of controller;

View content: You can press key to view G code of selected files, when you can test, save or modify the

code. In folder or under the HD root directory, you can press this key to go to the next lower directory. **Preview:** You can press "0" to preview the selected figure with G code to see whether the figure is the part you want to load.

Previous: You can press key to go back to previous directory until the root directory. Please note that under

the root directory, you can carry out limited operations if you are familiar with the system. If you are not familiar, do not add or delete any file or folder; otherwise, it will cause system crash or unexpected error, just like when you delete system files in Drive C of your personal PC.


Copy: Number key"3"; copy the files or folder in the current interface at a fast speed

Paste: Number key "4"; paste the files or folder to the current interface.

New file

Press key in file management interface to enter new file interface as follows:

New file interface

F6

kev

On key panel of controller, you can press the number keys to input numbers and edit file name, press

after the edition to save, or press shift the input methods between Chinese and Character, which

转换

would be displayed on the right bottom of the screen. Press key to shift the letter on key. For example when the top left corner shows "123", it means you are entering the corresponding number if you press a key. If it shows "ACE", the letter you entered would be the first letter of the key. If it shows "BDF", the letter you entered would be the second letter of the key.

Letter is entered as the following format. Press key to shift the surrogate key. The layout is as follows:

NEXT

Keyboard layout

After the input, press confirm key to save the file and go to the edition interface as follows. If the file name you

确定

entered exists, the system will prompt whether to cover the original file after pressing CONFIRM. Carry out the operation according to the relevant prompt.

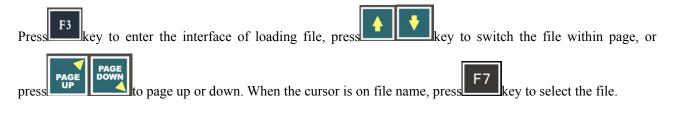
123 Flame/Plasma/Fluid CCSV0.2.23	SysTime	07:32:58
0000: G92X0Y0 0001: M07 0002: G1X30Y30 0003: G02I50J0 0004: G1X-30Y-30 0005: M08 0006: G28		
Home Figure Check InptMETH Add L Delete L	Saue	Return

Interface of editing new file

Once a new processing file is created, you can edit the required codes of processing files in the edition area.

USB Files

Press F4 key to perform the USB disk connection. If the USB disk is not connected well or the format of USB disk is not compatible with system, the system will prompt "Could not find USB disk, press any key to return".


Change a new USB disk if it is not compatible, or insert it again if it is compatible and then press

If the USB disk is connected successfully, the interface will show the names of files stored in the USB disk as follows:

Flame/Plasma/Fluid CCSV0.2.23	B Syst	time 07:32:22
	Name	Size(bytes)
	MSDOS.SYS	
	MSDUS.SYS COMMAND.COM SSPEED~1.M VMAXSP~1.M 论文集 步进电~1.TXT MATLAB~1.DOC CNC424~1.DOC ARM9UB~1	4K
	❹ VMAXSP~1.M	541
	■ 步进电~1.TXT	186
	MATLAB~1.DOC CNC424~1.DOC	6M 2M
	📛 ARM9UB~1 🗐 S3C2440.PDF	3M
	盲 ARM学~1	511
	□ 文泰三雷 □ 4500与~1	_
	□ 调试软件 □ 33C2400	
	■ 5522400 ● 展会总~1.DOC	43K
Drowiow	Enter-Import O-Previ	
Preview 2-cpy to sys	PREV-Upturn 3-Copy	4-Press
Home New View file U-disk MO)7M08 Lookin II	mport Return
		ne car n

Interface after the USB disk is connected

Press to select the processing files you want to copy, and press number key "2" to copy them to controller. A prompt "Data copy complete, press any key to return" will pop up when the copy is complete. You can then press any key to exit.

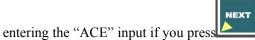
Note: When using USB disk to download processing files for the nest software, the file should be in ANSI format. UNICODE coding file is not recognizable.

Edit processing file

Create a new file or load a file, and enter the edition interface, you can then edit the processing file as follows:

123	Flame/Plasma/Fluid CCS	\$V0.2.23	SysT	ime 07:33:05
0000: G92X0Y 0001: M07 0002: G1X30Y 0003: G02I50 0004: G1X-30 0005: M08 0006: G28	30 J0			
Home Figu	ure Check InptME	TH Add L	Delete L S	ave Return

Interface of file content


In edition interface, you can press to move the cursor to a certain line or column

to switch among pages. There are two ways to input G code in the within an interface, or press interface, shift input and surrogate input.

to shift, which would be prompted on the top left corner of the screen. You are 1. Shift input: Press

. You are entering the "BDF" input after pressing

NEXT You are returning "123" input after pressing the third time. If it shows "123", and you press the key at this time, the number indicated on the key will show on the cursor position of the screen; if it shows "ACE", the letter you entered would be the first letter of the key; if it shows "BDF", the letter you entered would be the

CNC Flame/Plasma Cutting Control

second letter of the key. For example, if you press number key

entering number "7" in position where the cursor located, or letter "A" when in "ACE" input method, or letter "B" when in "BDF" input method.

2. Surrogate input: You do not have to press key to switch the letter. You can press a key once in a certain time interval to enter the first letter, twice to enter the second letter, or three times to enter the third letter. For

NEXT

example, if you press number key **2** once in a certain time interval; you are entering number "7". If you press this key twice or three times in a certain time interval, you are entering letter "A" and "B" respectively.

Note: Shift input and surrogate input methods are switched in password parameter, and set upon personal habit. If a key only has one letter, you can use any input method to enter this letter.

Graph

NCmaker

Press F2 key and the interface will show the preview analog figure you are editing for your reference. **Detection**

When you have entered codes of processing file or loaded nest software codes, you can press

whether there is something wrong with the codes. If there is an error, the line with error will be displayed in reverse color and a prompt will be shown at the bottom indicating the type of error. In case of error, the system will report and stop the test; you just need to follow the instructions at the bottom of interface to figure it out.

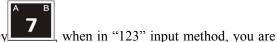
Save

Save the modified processing file in memory of control system.

F5

Add line

During the editing, you can press


Delete line

During the editing, you can press $\mathbf{F6}$ key to delete the code line where the cursor is located. **Operation**

确定

 Up/Down of Cursor: The cursor is always located at the end of a program line when it is moving up/down. It shifts a line each time you press the key. When the cursor shifts out the first line, the screen will roll forward a line if there is a program line ahead. When the cursor shifts out the last line, the screen will roll downward a line if there is a program line below.

key to add a line of code under the cursor.

- 2) Page Up/Down: You can press or bow key to page up or down.
- 3) The line number of processing program is generated automatically.

4) You can press key on panel to delete a character of the current instruction.

5) Press F6 key to delete the current line.

3.2.18 Parameters backup and restore feature \geq

System management

Interface of system management comprises default, one-key recovery, software upgrade, and factory setup as follows:

Flar	ne/Plasma/Fluid CCSV0.3	2.23	SysTime	07:42:37
	HardVersid	on:1.2		
Home Default	Restore Upgrade	SetPWD		Return

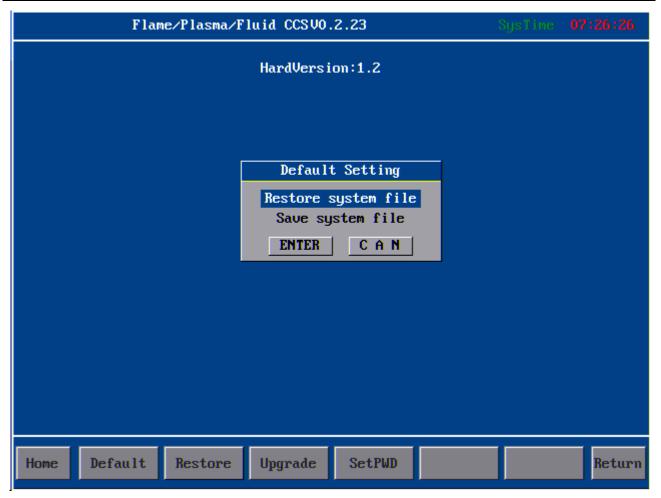
System management

Default

F2 (Factory default), and the interface is shown as follows. Choose "System parameters restore" and Press

确定 CONFIRM

valid, it will go to the next interface. You can


to go to the next step when the system will prompt you to enter password "360". If the password is press

confirm to restore the parameters of at this time or press

current cutting mode to the saved factory default. If the parameters have been restored, the interface will pause for 1 second and restart the system using the restored parameters. As the following picture shows:

Interface of default setup

press confirm to go to the next step when the system will prompt you to enter password. Enter"361", and press confirm to continue. If the password is invalid, the setup will exit; if the password is valid, it will go to the next step.

Likewise, you can press to cancel or press confirm to save the parameters of current cutting mode as the factory defaults. The setup method is the same as that of restoring the parameters.

One-Key Recovery

One-key recovery function is used to backup or restore the system files. It is designed for preventing the loss of system files caused by the formatting and error in operation. You need to backup the system files when initializing, so that when the system file lost, you can restore the files to recover the system.

3.3 Software upgrade

Upgrade function is provided for users to upgrade the application software to the latest version. In system

management interface, presserve key and the interface of "Choose the upgrade mode" will show up. Two modes of upgrading are provided, upgrade via PC and upgrade via USB disk. As the following picture show:

Flame/Plasma/Fluid CCSV0.2.23	Systime 07:38:03
HardVersion:1.2	
Update style	
Update form pc	
Update form U-disk	
Home Default Restore Upgrade SetPWD	Return
none pertaite nescore opgrade occiwp	ine cur ii

Choose the upgrade mode

USB disk connected

When the cursor is moved to "Upgrade via USB disk", the system will start the USB disk function. If the system finds the USB disk, it means the USB disk is connected successfully. As the following picture shows:

Flame/Plasma/Fluid CCSV0.2.23	SysTime	07:52:01
CurDir usb:\		
MSDOS.SYS		
COMMAND.COM		
SSPEED~1.M		
VMAXSP~1.M		
论文集 <dir></dir>		
步进电~1.TXT		
MATLAB~1.DOC		
CNC424~1.DOC		
ARM9UB~1 <dir></dir>		
S3C2440.PDF		
ARM学~1 〈DIR〉		
文泰三雷 〈DIR〉		
4500与~1 <dir></dir>		
调试软件 <dir></dir>		
S3C2400 <dir></dir>		
展会总~1.DOC		
│激光调高 〈DIR〉		
三 <u></u> 思司~1.JPG		
V8008P~1.RAR		
ARM9嵌~1 〈DIR〉		
Return Upgrade		Return

USB disk connected

Once the USB disk is connected, move the cursor to "ADTROM.BIN" and press upgrading automatically. After the upgrade, you need to restart the system and record the program. For program recording, please see the later chapter.

If the files selected are not the system files for upgrading, the system will give an upgrade failure prompt or other info.

Upgrade via PC

Flame/Plasma/Fluid CCSV0.2.23	SysTime	07:38:03
HardVersion:1.2		
Update style		
Update form pc		
Update form U-disk		
Home Default Restore Upgrade SetPWD		Return

Connect the PC

Connect one end of the USB line to PC and the other end to the interface of controller, and then

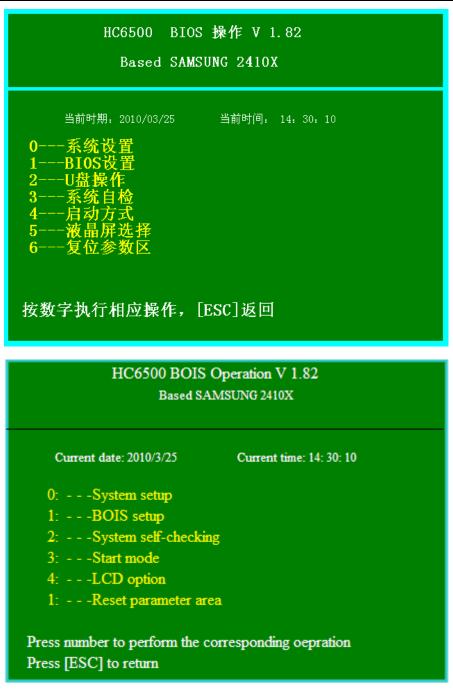
press to move cursor to "Upgrade via PC" and press OPER. Open "My Computer" and the controller will be displayed as a 64M USB disk on the computer. Double click "Removable USB disk" and the following interface shows up, which include all system files of the controller.

CNC Flame/Plasma Cutting Control

☞ G:\					
	收藏 (A) 工具 (T) 帮!				A.
🔇 后退 🔹 🕥 🕘 🤌	🔎 搜索 🕞 文件夹	X 🖻 🔓 🗙 🍤	✓ Ⅲ		
地址 (D) 🗢 G: \					🔽 芛 转到
文件和文件夹任务 ジ 创建一个新文件夹	ADT	ICO	PARA	PRG PRG	
 ● おえいて ● 将这个文件夹发布到 ● ※ ● 共享此文件夹 	PROG	STEMP	USER	hzk16 文件 262 KB	
其它位置	hzk24s 文件 487 KB				
 ● 我的电脑 ● 我的文档 ● 共享文档 ● 网上邻居 					
	2				
o				740 77	
9 个对象 	☞ 💛 🔁 E:\H	■ 中文 1 sscom32	🥏 来自 🗀 E:\H		🚽 我的电脑
			y stellas - U.s.		

Then, double click to open this folder, copy the software named "adtrom.bin" to "ADT" folder in the

取消


following picture to cover the original "adtrom.bin" file. After the copy, press can key on controller, and the system will restart automatically to record the latest program to BIOS chip.

Recording program

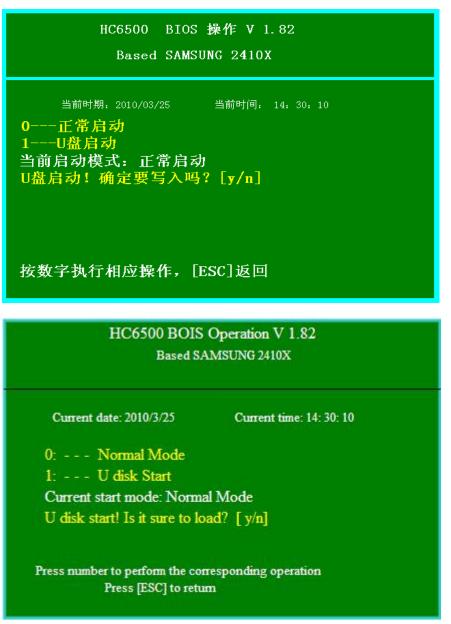
When you have copied the latest application software to controller, you need to save the software to the controller BIOS so that the controller can operate the software. To do this, you should cut the controller power supply first,

press and hold **R** key when the controller is restarted. The BIOS setup interface is shown as follows:

Press number key "1" to "BIOS setup" with the following interface.

Press [ESC] to return

Press 1 again to upgrade program data. Then "adtrom.bin" file which was copied in system ADT file folder via PC or U disk will be searched automatically by the system. When the file is found, the interface is shown as follows, and then upgrade and load need to confirm.



Press [ESC] to return

key, and upgrade is complete after prompt cancellation. Press L

After upgrading program, start mode should be checked whether it is "Normal start" mode. Press "Cancel" to enter the first BIOS interface. Select "4 Start mode" as follows:

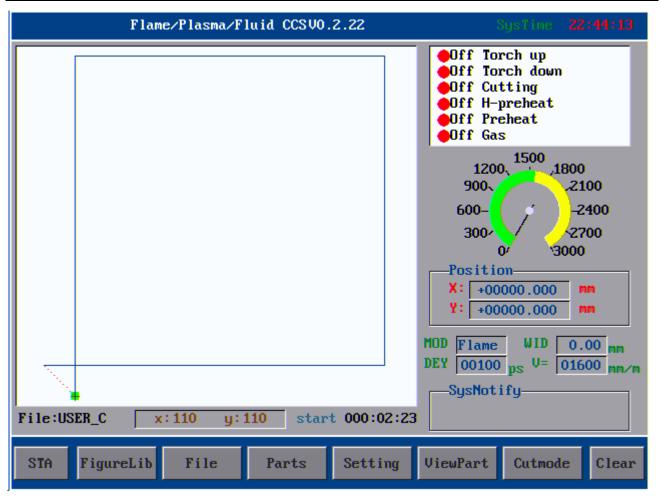
Press the corresponding number key "1---Normal start", and the system will prompt "Normal start! Do you want to

continue? [y/n]". Press

Y

stude to set the system to "Normal start".

Power-off and restart system after upgrade completion.


3.2.19 Multi-language display support

CNC6500 is a system with bilingual, Chinese and English, with the language shift steps as follows: Setting option --- Advanced setup --- Input "360" password --- Setting option --- Press "Confirm" key in the

"Language" column to select the language type to be displayed --- Save setting.

The following picture shows English interface:

CNC6500 has French, Russian, Polish, and Turkish etc for displays other than English display.

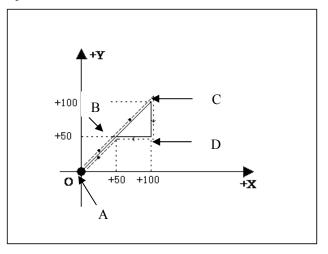
3.2.20 Multi-language input method support

Please kindly Contact CNCmakers directly for details operation way

Chapter IV Instruction System

> Explanation of programming symbol

Every motion of the CNC processing is done following the due process, every processing program is composed by several instruction segments, each instruction segment is composed by several function words, and each function word should be started with a letter following by the parameter value.


Definition of function word:

- G Preparatory function
- M Miscellaneous function
- L Cycle number or delay time
- X Coordinate of X axis: It is relative coordinate in G91 (default), and absolute coordinate in G90.
- Y Coordinate of Y axis: It is relative coordinate in G91 (default), and absolute coordinate in G90.
- I during the circular arc processing, the center coordinate value minus the original value of X axis
- J during the circular arc processing, the center coordinate value minus the original value of Y axis
- R Specify the radius of circular arc

> Coordinate explanation

> Relative coordinate

In coordinate system, if the coordinate of current point is calculated from the previous coordinate, it is called relative coordinate. As the picture shows:

As the above picture, if calculated by relative coordinate, the coordinate of the points in picture are as follows:

- 1. Point A is the origin, the coordinate is (X0, Y0);
- 2. Point B is (X50, Y50) relative to point A;
- 3. Point C is (X50, Y50) relative to point B;
- 4. Point D is Y-50 relative to point C;
- 5. Point D returns to point B, and the coordinate is X-50;

Absolute coordinate

In coordinate system, if the coordinate of current point is calculated from the origin, it is called absolute coordinate.

As picture 2.1, if calculated by absolute coordinate, the coordinate of the points in picture are as follows

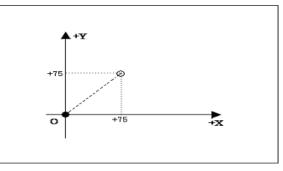
- 1. Point A is the origin, the coordinate is (X0, Y0);
- 2. Point B is (X50, Y50) relative to point A;
- 3. Point C is (X100, Y100) relative to point A;
- 4. Point D is (X100, Y50) relative to point A;
- 5. Point D returns to point B, and is (X50, Y50);

➢ G instruction explanation

➢ G92 reference point setup

When program running is set, the coordinate of processing origin (reference point) of program should be put at the beginning of program.

Format: G92 X0 Y0

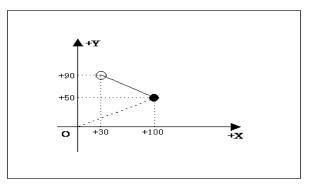

If G92 is not followed with X/Y content, the current coordinate (X, Y) is taken as the reference point. Usually, when locating using the machine origin, G92 would not have X and Y content.

➢ G00 idle motion

This instruction enables you to travel to the appointed position quickly. During the travel, the system moves from the starting point to end point in rectilinear motion at the manual limiting speed. G00 motion would not be influenced by the speed rate.

Format: G00 Xn Yn For example: G92 X0 Y0 G00 X75 Y75 M02

- Current position of cutting gun
- Expected position of cutting gun



➢ G01 linear cutting

This instruction enables you to feed the burning torch to the appointed position in linear way. As the cutting motion instruction, single-axis or dual-axis linear interpolation is available.

Format: G01 Xn Yn For example:

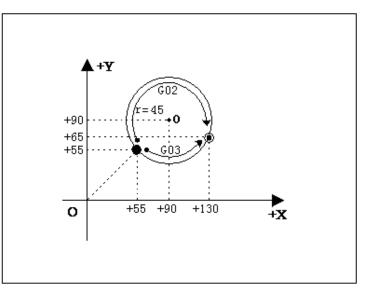
```
G92 X0 Y0
G90
G00 X100 Y50
M07
G01 X-30 Y90
M08
```


M02

•Current position of cutting gun

 $\circ Expected$ position of cutting gun

➢ G02/G03 circular arc cutting


This instruction is used to cut a circle or circular arc. The circle is divided into G02 (clockwise) and G03 (anti-clockwise).

Format: G02[03] Xn Yn In Jn

For example (G02):

G92 X0 Y0 G00 X55 Y55 M07 G03 X75 Y10 I35 J35 M02

Note: Cut a section of circular arc clockwise For example (G03): G92 X0 Y0 G00 X55 Y55 M07

•Current position of cutting gun

G03 X75 Y10 I35 J35

•Expected position of cutting gun

Explanation:

M02

I and J are the increment of center at X and Y-axis direction relative to the origin. When you are writing processing files, if you want to write a circle with a diameter of 100MM, to make it simple you can enter I50 J0 directly. If the circle diameter is 150MM, you can just enter I75 J0.

➢ G04 Pause/Delay instruction

This instruction is used to set the time delay. When the program performs this instruction, the time will delay upon the L defined time. The time unit is in second.

Format: G04 Ln

For example: G04 L3.6 (3.6s delay)

If G04 does not have Ln behind, the system will delay without time limit once G04 is performed until you press [Start] key.

➢ G26, G27, G28 Back to reference point

This instruction allows the bruning torch to return to reference point automatically.

Format:

G26: X axis back to reference pointG27: Y axis back to reference pointG28: X and Y axes back to reference point at the same timeFor example: G28 (X and Y axes back to reference point at the same time, equal to run G00)

➢ G22/G80 cycle processing

This instruction can be used to perform cycle processing. G22 is the beginning of loop, and cycle time L is

appointed. G80 is the end mark of loop. G22 and the nearest G80 below form a loop.

Format: G22 Ln_ (L specifies the cycle times)

Loop

G80 (End mark of loop)

For example: 0000 G92 X100 Y100

0001: G22 L10000 — Cycle starts 0002: G00 X50 Y50 0003: G01 X80 Y80 0004: G80 — Cycle ends 0005: M02

➢ G81 workpiece counting

This instruction is used by the system to count the total workpiece automatically.

Format: G81

For example: 0000 G92 X0 Y0

0001: G22 L3—Cycle starts 0002: G01 X50 Y50 0003: G81—Counting 0004: G80—Cycle ends 0005: M02

Common M instructions

1) Common M instructions:

Users only need to know the functions of M07, M08, and M02 instructions. M07 refers to fixed cycle of preheating and perforating. When the track is processed and come to perform M08, the system will close all related valves. In the end, perform M02 to finish the processing. Detailed functions of codes are as follows:

Flame:

- ① M07 Fixed cycle of preheating and perforating, operating sequence is as follows:
 - 1. Open acetylene valve;
 - 2. Ignition on;
 - 3. Drop the burning gun;
 - 4. Open the preheating valve and start preheating;
 - 5. Lift the perforating burning gun;
 - 6. Open cutting oxygen valve;
 - 7. Drop the perforating burning gun;
 - 8. Perforation complete, and go to the next motion.
- ② M08 Close the cutting fixed cycle. The operating sequence is as follows:
 - 1. Close the cutting oxygen valve;
 - 2. Lift the burning gun.

Plasma:

1

- A). with height regulation system:
- ① Enable height regulation M22
- ^② Arcing M12
- ③ Waiting for arc voltage detection signal (IN0)

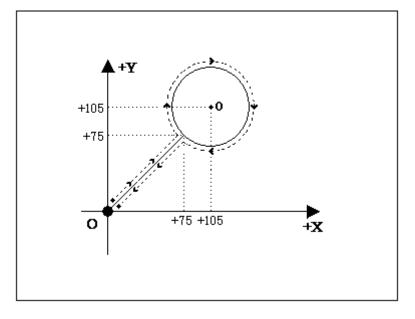
After arcing, the height regulation control starts performing initial location (With initial location function), perforating and perforating delay automatically, and gives a signal of successful arc voltage detection to the controller.

- B). without height regulation system:
- ① Arcing, arcing delay M12
- ^② Perforating, perforating delay
- C). Start the following actions

2

- 1. Close striking arc M13
- 2. Close the height regulation control M23

- ③ M02 program end instruction
- 2) other M instructions:


① M10/M11 switch of acetylene valve, M10 (Open), M11 (Closed)
② M12/M13 switch of cutting control valve, M12 (Open), M13 (Closed)
③ M14/M15 switch for controlling the rise of burning gun, M14 (Open), M15 (Closed)
④ M20/M21 ignition switch, M20 (Open), M21 (Closed)
(5) M24/M25 switch of preheating oxygen valve, M24 (Open), M25 (Closed)
⁽⁶⁾ M52 ignition fixed cycle (controlled by time in "Cutting type")
⑦M70 fixed cycle of burning gun rising (controlled by time in "Cutting type")
⁽⁸⁾ M71 fixed cycle of burning gun falling (controlled by time in "Cutting type")
(9)M72 fixed cycle of perforating burning gun rising (controlled by time in "Cutting type")
^{(IIII}) M73 fixed cycle of perforating burning gun falling (controlled by time in "Cutting type")
(1)M74 fixed cycle of preheating (controlled by time in "Cutting type")
(12)M80 main switch, all output ports are closed if M80 is performed.

> Annex I. Illustration of edition and processing

Press F2 key in main interface to enter the edition option interface, where you can press F1 key to create a new processing file. Then, you can enter a file name and press confirm key to enter the file edition interface. In this chapter, we take cutting the following figure as an example. (Dashed line and arrow refer to the direction of motion, solid line refers to the track of cutting, and "•" is the starting point of cutting.)

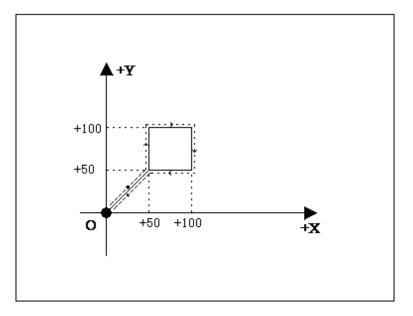
Remark: Because absolute coordinate is not used often, we do not introduce it in this chapter. In this chapter, we use the relative coordinate.

Standard circle

The program is as follows:

1) Relative coordinates programming and explanation of graph codes:

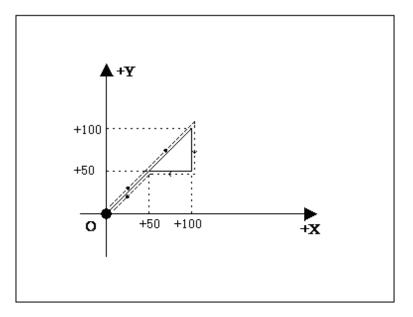
0000: G92 X0 Y0—set the reference point;


0001: G22 L3—L: set the processing loops; "3" means loop for 3 times;

0002: M07——It is the preheating perforating function. Prompt: Please set all the time parameters in flame or plasma control option in the parameter setup according to the actual demand.

- 0003: G01 X75 Y75—perforating and wire bonding;
- 0004: G02 I30 J0—Clockwise circle processing;
- 0005: M08——Preheating oxygen, acetylene, and cutting oxygen valves closed;
- 0006: G00 X-75 Y-75—travel to the origin at the highest manual speed;
- 0007: G81——Counting instruction, it counts once for each loop automatically;
- 0008: G80—cycle ends;
- 0009: M02-processing ends

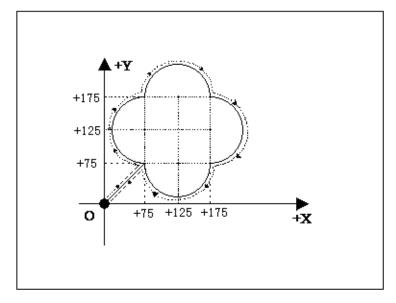
Square



1) Relative coordinates programming and explanation of graph codes:

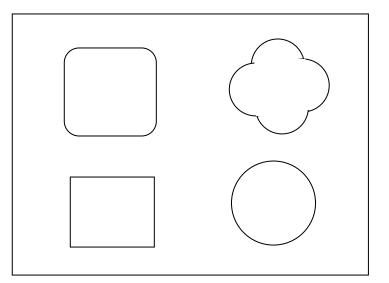
0000: G92 X0 Y0

- 0001: M07—Perforating;
- 0002: G01 X50 Y50—Perforation and wire bonding;
- 0003: Y50——the first side, if the above instruction is G01, this G01 as well as X0 of this instruction cannot omitted for the convenience of editing codes manually.
- 0004: X50-the second side;
- 0005: Y-50—the third side;
- 0006: X-50—the four side;
- 0007: M08—close the cutting oxygen
- 0008: G00 X-50 Y-50—travel to the origin at the highest manual speed;
- 0009: M02-processing ends


> Triangle

1) Relative coordinate programming

0000: G92 X0 Y0 0001: G01 X50 Y50 0002: X50 Y50 0003: Y-50 0004: X-50 0005: G00 X-50 Y-50 0006: M02


> Quincunx

1) Relative coordinate programming

0000: G92 X0 Y0 0001: G01 X75 Y75 0002: G02 Y100 I0 J50 0003: X100 I50 J0 0004: Y-100 I0 J-50 0005 : X-100 I-50 J0 0006 : G01 X-75 Y-75 0007 : M02

> Four figures

1) Relative coordinate programming

0000: G92X0Y0

0001: G22 L100

0002: G0 X50

0003: G1 Y200

0004 : X200

0005 : Y-200

0006 : X-200

0007 : G00 Y400

0008 : G1 Y50

0009 : G2 X50 Y50 I50 J0

0010 : G1 X100

0011 : G2 X50 Y-50 I0 J-50

0012 : G1 Y-100

0013 : G2 X-50 Y-50 I-50 J0

0014 : G1 X-100

0015 : G2 X-50 Y50 I0 J50

0016 : G1 Y50

0017 : G00 X400 Y50

0018 : G2 X100 Y0 I50 J0

0019: Y-100 I0 J-50

0020: X-100 I-50 J0

0021: Y100 I0 J50

0022 : G00 X-50 Y-350

0023 : G2 X0 Y0 I100 J0

0024 : G0 X-400 Y-100

0025 : G81

0026: G80

0027 : M02

Annex II. G Instruction Quick Reference

S/N	Name of Instruction	Explanation
1	G00	Quick point and position motion (Dry run)
2	G01	Linear processing
3	G02	Clockwise circle processing
4	G03	Anti-clockwise circle processing
5	G04	Pause/Delay
6	G26	X axis returns to reference point
7	G27	Y axis returns to reference point
8	G28	X and Y axes return to reference point at the same time
9	G22	Cycle starts (should be used combining G80)
10	G80	Cycle ends (should be used combining G22)
11	G81	Counting function
12	G92	Set the reference point of processing

Annex III. M Instruction Quick Reference

S/N	Name of Instruction	Explanation
1	M02	Program ends
2	M07	Start the fixed cycle of preheating and perforating
3	M08	Close the fixed cycle of cutting oxygen
4	M10/M11	switch of acetylene valve, M10 (Open), M11 (Closed)
5	M12/M13	switch of control valve, M12 (Open), M13 (Closed)
6	M14/M15	switch for controlling the rise of burning gun, M14 (Open), M15 (Closed)
7	M20/M21	ignition switch, M20 (Open), M21 (Closed)
8	M24/M25	switch of preheating oxygen valve, M24 (Open), M25 (Closed)
9	M52	ignition fixed cycle (controlled by time in "Cutting type")
10	M70	fixed cycle of burning gun rising (controlled by time in "Cutting type")
11	M71	fixed cycle of burning gun falling (controlled by time in "Cutting type")
12	M72	fixed cycle of perforating burning gun rising (controlled by time in "Cutting type")
		fixed cycle of perforating burning gun falling (controlled by time in "Cutting
13	M73	type")
14	M74	fixed cycle of preheating (controlled by time in "Cutting type")
15	M80	main switch, all output ports are closed if M80 is performed

Annex IV. Troubleshooting

Failure	S/N	Failure description	Inspection item
	1	The motor does not run, or goes to dead	Check whether "Speed limit in auto mode" is
		state during the auto processing	set to the proper speed, and whether the
Abnormal			manual processing percentage is low.
motion	2	The motor does not run, or goes to dead	Check whether the manual speed limit is set
		state during the manual operation	to the proper speed, and whether the manual
			percentage is low.
	3	The processing code has instruction of	Check whether the manual speed limit is set
		back-to-reference, but the system does	to the proper speed, and whether the manual
		not go back to reference point after	percentage is low.
		having finished the track.	
	4	There is error in accuracy.	Re-calibrate the "Accuracy" in "Parameter"
Cutting	5	The right angle of square being cut is	Re-adjust the start-up speed and acceleration
quality		out of the vertical	in "speed" in "Parameter".
	6	There is wave vibration in opposite	Please adjust the reversal clearance in
		angle when cutting the circle.	"Adjustment" in "Parameter".
	7	The burning torch does not move when	Check whether the selected processing files
Abnormal		开始 START	have processing codes, or whether the system
operation		you press in the main interface.	has resisted the limit.
	8	The air valve does not work or the	Enter the "Diagnosis" interface and test the
		external switch does not work.	relevant items.
	9	The anti-interfere performance of	Check whether the grounding is in good
Others		plasma is poor.	condition.
	10	USB disk cannot be detected.	Enter the USB disk formatting interface via
			PC and change the original format to
			"FAT32" or "FAT", or change the USB disk.

Annex I: CNC6500 Alarm List

Alarm No.	Alarm Content	Solution

Record modification (I)

Feedback person	No	Feedback	No	Current	V0.2.21
		date		version/total	
				page	
Problem	1.User manual modification resulted from software change;				
description	2. User manual modification upon new template.				

After revision	Revised by
Total page	

Record modification (II)

Feedback	No	Feedback	20110614	Current
person		date		version/total
				page
Problem	Add the cor	ntent;		
description	Change the wiring to allow the user to be easier for understanding.			

Engineer Confirm After revision Version

After revision Total page

Revised by